Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning View Generalization Functions (0712.0136v1)

Published 2 Dec 2007 in cs.CV

Abstract: Learning object models from views in 3D visual object recognition is usually formulated either as a function approximation problem of a function describing the view-manifold of an object, or as that of learning a class-conditional density. This paper describes an alternative framework for learning in visual object recognition, that of learning the view-generalization function. Using the view-generalization function, an observer can perform Bayes-optimal 3D object recognition given one or more 2D training views directly, without the need for a separate model acquisition step. The paper shows that view generalization functions can be computationally practical by restating two widely-used methods, the eigenspace and linear combination of views approaches, in a view generalization framework. The paper relates the approach to recent methods for object recognition based on non-uniform blurring. The paper presents results both on simulated 3D ``paperclip'' objects and real-world images from the COIL-100 database showing that useful view-generalization functions can be realistically be learned from a comparatively small number of training examples.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Thomas M. Breuel (12 papers)

Summary

We haven't generated a summary for this paper yet.