Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Low Complexity Maximum Likelihood Decoding of Convolutional Codes (0711.3077v3)

Published 20 Nov 2007 in cs.IT, cs.CC, and math.IT

Abstract: This paper considers the average complexity of maximum likelihood (ML) decoding of convolutional codes. ML decoding can be modeled as finding the most probable path taken through a Markov graph. Integrated with the Viterbi algorithm (VA), complexity reduction methods such as the sphere decoder often use the sum log likelihood (SLL) of a Markov path as a bound to disprove the optimality of other Markov path sets and to consequently avoid exhaustive path search. In this paper, it is shown that SLL-based optimality tests are inefficient if one fixes the coding memory and takes the codeword length to infinity. Alternatively, optimality of a source symbol at a given time index can be testified using bounds derived from log likelihoods of the neighboring symbols. It is demonstrated that such neighboring log likelihood (NLL)-based optimality tests, whose efficiency does not depend on the codeword length, can bring significant complexity reduction to ML decoding of convolutional codes. The results are generalized to ML sequence detection in a class of discrete-time hidden Markov systems.

Citations (7)

Summary

We haven't generated a summary for this paper yet.