Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Limitations on intermittent forecasting (0710.3773v1)

Published 19 Oct 2007 in math.PR, cs.IT, and math.IT

Abstract: Bailey showed that the general pointwise forecasting for stationary and ergodic time series has a negative solution. However, it is known that for Markov chains the problem can be solved. Morvai showed that there is a stopping time sequence ${\lambda_n}$ such that $P(X_{\lambda_n+1}=1|X_0,...,X_{\lambda_n}) $ can be estimated from samples $(X_0,...,X_{\lambda_n})$ such that the difference between the conditional probability and the estimate vanishes along these stoppping times for all stationary and ergodic binary time series. We will show it is not possible to estimate the above conditional probability along a stopping time sequence for all stationary and ergodic binary time series in a pointwise sense such that if the time series turns out to be a Markov chain, the predictor will predict eventually for all $n$.

Citations (16)

Summary

We haven't generated a summary for this paper yet.