Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating Random Variables from Random Sparse Observations (0709.0145v1)

Published 3 Sep 2007 in cs.IT, math.IT, and math.PR

Abstract: Let X_1,...., X_n be a collection of iid discrete random variables, and Y_1,..., Y_m a set of noisy observations of such variables. Assume each observation Y_a to be a random function of some a random subset of the X_i's, and consider the conditional distribution of X_i given the observations, namely \mu_i(x_i)\equiv\prob{X_i=x_i|Y} (a posteriori probability). We establish a general relation between the distribution of \mu_i, and the fixed points of the associated density evolution operator. Such relation holds asymptotically in the large system limit, provided the average number of variables an observation depends on is bounded. We discuss the relevance of our result to a number of applications, ranging from sparse graph codes, to multi-user detection, to group testing.

Citations (55)

Summary

We haven't generated a summary for this paper yet.