Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Dichotomy Theorem for General Minimum Cost Homomorphism Problem (0708.3226v7)

Published 23 Aug 2007 in cs.LG and cs.CC

Abstract: In the constraint satisfaction problem ($CSP$), the aim is to find an assignment of values to a set of variables subject to specified constraints. In the minimum cost homomorphism problem ($MinHom$), one is additionally given weights $c_{va}$ for every variable $v$ and value $a$, and the aim is to find an assignment $f$ to the variables that minimizes $\sum_{v} c_{vf(v)}$. Let $MinHom(\Gamma)$ denote the $MinHom$ problem parameterized by the set of predicates allowed for constraints. $MinHom(\Gamma)$ is related to many well-studied combinatorial optimization problems, and concrete applications can be found in, for instance, defence logistics and machine learning. We show that $MinHom(\Gamma)$ can be studied by using algebraic methods similar to those used for CSPs. With the aid of algebraic techniques, we classify the computational complexity of $MinHom(\Gamma)$ for all choices of $\Gamma$. Our result settles a general dichotomy conjecture previously resolved only for certain classes of directed graphs, [Gutin, Hell, Rafiey, Yeo, European J. of Combinatorics, 2008].

Citations (56)

Summary

We haven't generated a summary for this paper yet.