Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cost-minimising strategies for data labelling : optimal stopping and active learning (0708.1242v3)

Published 9 Aug 2007 in cs.LG

Abstract: Supervised learning deals with the inference of a distribution over an output or label space $\CY$ conditioned on points in an observation space $\CX$, given a training dataset $D$ of pairs in $\CX \times \CY$. However, in a lot of applications of interest, acquisition of large amounts of observations is easy, while the process of generating labels is time-consuming or costly. One way to deal with this problem is {\em active} learning, where points to be labelled are selected with the aim of creating a model with better performance than that of an model trained on an equal number of randomly sampled points. In this paper, we instead propose to deal with the labelling cost directly: The learning goal is defined as the minimisation of a cost which is a function of the expected model performance and the total cost of the labels used. This allows the development of general strategies and specific algorithms for (a) optimal stopping, where the expected cost dictates whether label acquisition should continue (b) empirical evaluation, where the cost is used as a performance metric for a given combination of inference, stopping and sampling methods. Though the main focus of the paper is optimal stopping, we also aim to provide the background for further developments and discussion in the related field of active learning.

Citations (18)

Summary

We haven't generated a summary for this paper yet.