Papers
Topics
Authors
Recent
2000 character limit reached

Families of traveling impulses and fronts in some models with cross-diffusion

Published 6 Jun 2007 in cs.NA | (0706.0903v1)

Abstract: An analysis of traveling wave solutions of partial differential equation (PDE) systems with cross-diffusion is presented. The systems under study fall in a general class of the classical Keller-Segel models to describe chemotaxis. The analysis is conducted using the theory of the phase plane analysis of the corresponding wave systems without a priory restrictions on the boundary conditions of the initial PDE. Special attention is paid to families of traveling wave solutions. Conditions for existence of front-impulse, impulse-front, and front-front traveling wave solutions are formulated. In particular, the simplest mathematical model is presented that has an impulse-impulse solution; we also show that a non-isolated singular point in the ordinary differential equation (ODE) wave system implies existence of free-boundary fronts. The results can be used for construction and analysis of different mathematical models describing systems with chemotaxis.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.