Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Families of traveling impulses and fronts in some models with cross-diffusion (0706.0903v1)

Published 6 Jun 2007 in cs.NA

Abstract: An analysis of traveling wave solutions of partial differential equation (PDE) systems with cross-diffusion is presented. The systems under study fall in a general class of the classical Keller-Segel models to describe chemotaxis. The analysis is conducted using the theory of the phase plane analysis of the corresponding wave systems without a priory restrictions on the boundary conditions of the initial PDE. Special attention is paid to families of traveling wave solutions. Conditions for existence of front-impulse, impulse-front, and front-front traveling wave solutions are formulated. In particular, the simplest mathematical model is presented that has an impulse-impulse solution; we also show that a non-isolated singular point in the ordinary differential equation (ODE) wave system implies existence of free-boundary fronts. The results can be used for construction and analysis of different mathematical models describing systems with chemotaxis.

Citations (17)

Summary

We haven't generated a summary for this paper yet.