Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximizing Maximal Angles for Plane Straight-Line Graphs (0705.3820v2)

Published 25 May 2007 in cs.CG, cs.DM, and math.CO

Abstract: Let $G=(S, E)$ be a plane straight-line graph on a finite point set $S\subset\R2$ in general position. The incident angles of a vertex $p \in S$ of $G$ are the angles between any two edges of $G$ that appear consecutively in the circular order of the edges incident to $p$. A plane straight-line graph is called $\phi$-open if each vertex has an incident angle of size at least $\phi$. In this paper we study the following type of question: What is the maximum angle $\phi$ such that for any finite set $S\subset\R2$ of points in general position we can find a graph from a certain class of graphs on $S$ that is $\phi$-open? In particular, we consider the classes of triangulations, spanning trees, and paths on $S$ and give tight bounds in most cases.

Citations (12)

Summary

We haven't generated a summary for this paper yet.