Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Matroid Pathwidth and Code Trellis Complexity (0705.1384v1)

Published 10 May 2007 in cs.DM, cs.IT, and math.IT

Abstract: We relate the notion of matroid pathwidth to the minimum trellis state-complexity (which we term trellis-width) of a linear code, and to the pathwidth of a graph. By reducing from the problem of computing the pathwidth of a graph, we show that the problem of determining the pathwidth of a representable matroid is NP-hard. Consequently, the problem of computing the trellis-width of a linear code is also NP-hard. For a finite field $\F$, we also consider the class of $\F$-representable matroids of pathwidth at most $w$, and correspondingly, the family of linear codes over $\F$ with trellis-width at most $w$. These are easily seen to be minor-closed. Since these matroids (and codes) have branchwidth at most $w$, a result of Geelen and Whittle shows that such matroids (and the corresponding codes) are characterized by finitely many excluded minors. We provide the complete list of excluded minors for $w=1$, and give a partial list for $w=2$.

Citations (36)

Summary

We haven't generated a summary for this paper yet.