Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Degree Optimization and Stability Condition for the Min-Sum Decoder (0705.1345v1)

Published 9 May 2007 in cs.IT and math.IT

Abstract: The min-sum (MS) algorithm is arguably the second most fundamental algorithm in the realm of message passing due to its optimality (for a tree code) with respect to the {\em block error} probability \cite{Wiberg}. There also seems to be a fundamental relationship of MS decoding with the linear programming decoder \cite{Koetter}. Despite its importance, its fundamental properties have not nearly been studied as well as those of the sum-product (also known as BP) algorithm. We address two questions related to the MS rule. First, we characterize the stability condition under MS decoding. It turns out to be essentially the same condition as under BP decoding. Second, we perform a degree distribution optimization. Contrary to the case of BP decoding, under MS decoding the thresholds of the best degree distributions for standard irregular LDPC ensembles are significantly bounded away from the Shannon threshold. More precisely, on the AWGN channel, for the best codes that we find, the gap to capacity is 1dB for a rate 0.3 code and it is 0.4dB when the rate is 0.9 (the gap decreases monotonically as we increase the rate). We also used the optimization procedure to design codes for modified MS algorithm where the output of the check node is scaled by a constant $1/\alpha$. For $\alpha = 1.25$, we observed that the gap to capacity was lesser for the modified MS algorithm when compared with the MS algorithm. However, it was still quite large, varying from 0.75 dB to 0.2 dB for rates between 0.3 and 0.9. We conclude by posing what we consider to be the most important open questions related to the MS algorithm.

Citations (4)

Summary

We haven't generated a summary for this paper yet.