Papers
Topics
Authors
Recent
Search
2000 character limit reached

Light Logics and Optimal Reduction: Completeness and Complexity

Published 19 Apr 2007 in cs.LO and cs.PL | (0704.2448v1)

Abstract: Typing of lambda-terms in Elementary and Light Affine Logic (EAL, LAL, resp.) has been studied for two different reasons: on the one hand the evaluation of typed terms using LAL (EAL, resp.) proof-nets admits a guaranteed polynomial (elementary, resp.) bound; on the other hand these terms can also be evaluated by optimal reduction using the abstract version of Lamping's algorithm. The first reduction is global while the second one is local and asynchronous. We prove that for LAL (EAL, resp.) typed terms, Lamping's abstract algorithm also admits a polynomial (elementary, resp.) bound. We also show its soundness and completeness (for EAL and LAL with type fixpoints), by using a simple geometry of interaction model (context semantics).

Citations (27)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.