Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning from compressed observations (0704.0671v1)

Published 5 Apr 2007 in cs.IT, cs.LG, and math.IT

Abstract: The problem of statistical learning is to construct a predictor of a random variable $Y$ as a function of a related random variable $X$ on the basis of an i.i.d. training sample from the joint distribution of $(X,Y)$. Allowable predictors are drawn from some specified class, and the goal is to approach asymptotically the performance (expected loss) of the best predictor in the class. We consider the setting in which one has perfect observation of the $X$-part of the sample, while the $Y$-part has to be communicated at some finite bit rate. The encoding of the $Y$-values is allowed to depend on the $X$-values. Under suitable regularity conditions on the admissible predictors, the underlying family of probability distributions and the loss function, we give an information-theoretic characterization of achievable predictor performance in terms of conditional distortion-rate functions. The ideas are illustrated on the example of nonparametric regression in Gaussian noise.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Maxim Raginsky (69 papers)
Citations (16)

Summary

We haven't generated a summary for this paper yet.