Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 465 tok/s Pro
Kimi K2 205 tok/s Pro
2000 character limit reached

On the Assouad dimension of self-similar sets with overlaps (1404.1016v2)

Published 3 Apr 2014 in math.CA, math.DS, and math.MG

Abstract: It is known that, unlike the Hausdorff dimension, the Assouad dimension of a self-similar set can exceed the similarity dimension if there are overlaps in the construction. Our main result is the following precise dichotomy for self-similar sets in the line: either the \emph{weak separation property} is satisfied, in which case the Hausdorff and Assouad dimensions coincide; or the \emph{weak separation property} is not satisfied, in which case the Assouad dimension is maximal (equal to one). In the first case we prove that the self-similar set is Ahlfors regular, and in the second case we use the fact that if the \emph{weak separation property} is not satisfied, one can approximate the identity arbitrarily well in the group generated by the similarity mappings, and this allows us to build a \emph{weak tangent} that contains an interval. We also obtain results in higher dimensions and provide illustrative examples showing that the `equality/maximal' dichotomy does not extend to this setting.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube