Papers
Topics
Authors
Recent
Search
2000 character limit reached

Plug-In Classification of Drift Functions in Diffusion Processes Using Neural Networks

Published 2 Feb 2026 in stat.ML, cs.LG, and math.ST | (2602.02791v1)

Abstract: We study a supervised multiclass classification problem for diffusion processes, where each class is characterized by a distinct drift function and trajectories are observed at discrete times. Extending the one-dimensional multiclass framework of Denis et al. (2024) to multidimensional diffusions, we propose a neural network-based plug-in classifier that estimates the drift functions for each class from independent sample paths and assigns labels based on a Bayes-type decision rule. Under standard regularity assumptions, we establish convergence rates for the excess misclassification risk, explicitly capturing the effects of drift estimation error and time discretization. Numerical experiments demonstrate that the proposed method achieves faster convergence and improved classification performance compared to Denis et al. (2024) in the one-dimensional setting, remains effective in higher dimensions when the underlying drift functions admit a compositional structure, and consistently outperforms direct neural network classifiers trained end-to-end on trajectories without exploiting the diffusion model structure.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 3 likes about this paper.