Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Boosting Multi-modal Keyphrase Prediction with Dynamic Chain-of-Thought in Vision-Language Models (2510.09358v1)

Published 10 Oct 2025 in cs.CV

Abstract: Multi-modal keyphrase prediction (MMKP) aims to advance beyond text-only methods by incorporating multiple modalities of input information to produce a set of conclusive phrases. Traditional multi-modal approaches have been proven to have significant limitations in handling the challenging absence and unseen scenarios. Additionally, we identify shortcomings in existing benchmarks that overestimate model capability due to significant overlap in training tests. In this work, we propose leveraging vision-LLMs (VLMs) for the MMKP task. Firstly, we use two widely-used strategies, e.g., zero-shot and supervised fine-tuning (SFT) to assess the lower bound performance of VLMs. Next, to improve the complex reasoning capabilities of VLMs, we adopt Fine-tune-CoT, which leverages high-quality CoT reasoning data generated by a teacher model to finetune smaller models. Finally, to address the "overthinking" phenomenon, we propose a dynamic CoT strategy which adaptively injects CoT data during training, allowing the model to flexibly leverage its reasoning capabilities during the inference stage. We evaluate the proposed strategies on various datasets and the experimental results demonstrate the effectiveness of the proposed approaches. The code is available at https://github.com/bytedance/DynamicCoT.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: