Computation of cohomology of finite Lie conformal algebras
Abstract: By using the energy operator introduced by B. Bakalov, A. De Sole, and V.\,G. Kac, we propose an algorithm for computing the cohomology of finitely generated free Lie conformal algebras with a Virasoro element. This computational method enables us to determine cohomologies with coefficients in their conformal modules, including the trivial module, irreducible finitely free modules, and adjoint modules. As concrete applications, we compute by \textit{Mathematica} both basic and reduced cohomologies for the $\mathcal{W}(b)$, Schr\"odinger-Virasoro and extended Schr\"odinger-Virasoro Lie conformal algebras.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.