Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 417 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

ClusterLOB: Enhancing Trading Strategies by Clustering Orders in Limit Order Books (2504.20349v3)

Published 29 Apr 2025 in q-fin.TR

Abstract: In the rapidly evolving world of financial markets, understanding the dynamics of limit order book (LOB) is crucial for unraveling market microstructure and participant behavior. We introduce ClusterLOB as a method to cluster individual market events in a stream of market-by-order (MBO) data into different groups. To do so, each market event is augmented with six time-dependent features. By applying the K-means++ clustering algorithm to the resulting order features, we are then able to assign each new order to one of three distinct clusters, which we identify as directional, opportunistic, and market-making participants, each capturing unique trading behaviors. Our experimental results are performed on one year of MBO data containing small-tick, medium-tick, and large-tick stocks from NASDAQ. To validate the usefulness of our clustering, we compute order flow imbalances across each cluster within 30-minute buckets during the trading day. We treat each cluster's imbalance as a signal that provides insights into trading strategies and participants' responses to varying market conditions. To assess the effectiveness of these signals, we identify the trading strategy with the highest Sharpe ratio in the training dataset, and demonstrate that its performance in the test dataset is superior to benchmark trading strategies that do not incorporate clustering. We also evaluate trading strategies based on order flow imbalance decompositions across different market event types, including add, cancel, and trade events, to assess their robustness in various market conditions. This work establishes a robust framework for clustering market participant behavior, which helps us to better understand market microstructure, and inform the development of more effective predictive trading signals with practical applications in algorithmic trading and quantitative finance.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 5 tweets and received 84 likes.

Upgrade to Pro to view all of the tweets about this paper: