Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
122 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Large Language Model Strategic Reasoning Evaluation through Behavioral Game Theory (2502.20432v2)

Published 27 Feb 2025 in cs.AI, cs.CY, cs.GT, and cs.LG

Abstract: Strategic decision-making involves interactive reasoning where agents adapt their choices in response to others, yet existing evaluations of LLMs often emphasize Nash Equilibrium (NE) approximation, overlooking the mechanisms driving their strategic choices. To bridge this gap, we introduce an evaluation framework grounded in behavioral game theory, disentangling reasoning capability from contextual effects. Testing 22 state-of-the-art LLMs, we find that GPT-o3-mini, GPT-o1, and DeepSeek-R1 dominate most games yet also demonstrate that the model scale alone does not determine performance. In terms of prompting enhancement, Chain-of-Thought (CoT) prompting is not universally effective, as it increases strategic reasoning only for models at certain levels while providing limited gains elsewhere. Additionally, we investigate the impact of encoded demographic features on the models, observing that certain assignments impact the decision-making pattern. For instance, GPT-4o shows stronger strategic reasoning with female traits than males, while Gemma assigns higher reasoning levels to heterosexual identities compared to other sexual orientations, indicating inherent biases. These findings underscore the need for ethical standards and contextual alignment to balance improved reasoning with fairness.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.