Adaptive Neural Network Subspace Method for Solving Partial Differential Equations with High Accuracy
Abstract: Based on neural network and adaptive subspace approximation method, we propose a new machine learning method for solving partial differential equations. The neural network is adopted to build the basis of the finite dimensional subspace. Then the discrete solution is obtained by using the subspace approximation. Especially, based on the subspace approximation, a posteriori error estimator can be derivated by the hypercircle technique. This a posteriori error estimator can act as the loss function for adaptively refining the parameters of neural network.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.