Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Recurrent Interpolants for Probabilistic Time Series Prediction (2409.11684v2)

Published 18 Sep 2024 in cs.LG and stat.ML

Abstract: Sequential models like recurrent neural networks and transformers have become standard for probabilistic multivariate time series forecasting across various domains. Despite their strengths, they struggle with capturing high-dimensional distributions and cross-feature dependencies. Recent work explores generative approaches using diffusion or flow-based models, extending to time series imputation and forecasting. However, scalability remains a challenge. This work proposes a novel method combining recurrent neural networks' efficiency with diffusion models' probabilistic modeling, based on stochastic interpolants and conditional generation with control features, offering insights for future developments in this dynamic field.

Summary

We haven't generated a summary for this paper yet.