Nonlinear effect of absorption on the ringdown of a spinning black hole
Abstract: The ringdown gravitational wave signal arising e.g., in the final stage of a black hole binary merger, contains important information about the properties of the remnant, and can potentially be used to perform clean tests of general relativity. However, interpreting the ringdown signal, in particular when it is the loudest, requires understanding the role of nonlinearities and their potential impact on modelling this phase using quasinormal modes. Here, we focus on a particular nonlinear effect arising from the change in the black hole's mass and spin due to the partial absorption of a quasinormal perturbation. We isolate and systematically study this third-order, secular effect by evolving the equations governing linear metric perturbations on the background of a spinning black hole, but allowing the properties of the background to evolve in a prescribed way. We find that this leads to the excitation of quasinormal modes with higher polar angular number, retrograde modes (counter-rotating with respect to the black hole), and overtones, as well as giving rise to a component of the signal at early times that cannot be fully described using quasinormal modes. Quantifying these effects, we find that they may be relevant in analyzing the ringdown in black hole mergers.
- S. A. Teukolsky, Astrophys. J. 185, 635 (1973).
- K. D. Kokkotas and B. G. Schmidt, Living Rev. Rel. 2, 2 (1999), arXiv:gr-qc/9909058 .
- B. Carter, Phys. Rev. Lett. 26, 331 (1971).
- V. Cardoso and P. Pani, Living Rev. Rel. 22, 4 (2019), arXiv:1904.05363 [gr-qc] .
- R. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. D 103, 122002 (2021), arXiv:2010.14529 [gr-qc] .
- M. Isi and W. M. Farr, (2021), arXiv:2107.05609 [gr-qc] .
- E. Finch and C. J. Moore, Phys. Rev. D 106, 043005 (2022), arXiv:2205.07809 [gr-qc] .
- M. H.-Y. Cheung et al., Phys. Rev. Lett. 130, 081401 (2023), arXiv:2208.07374 [gr-qc] .
- K. Mitman et al., Phys. Rev. Lett. 130, 081402 (2023), arXiv:2208.07380 [gr-qc] .
- H. Nakano and K. Ioka, Phys. Rev. D 76, 084007 (2007), arXiv:0708.0450 [gr-qc] .
- H. Zhu et al., (2024a), arXiv:2401.00805 [gr-qc] .
- S. Ma and H. Yang, (2024), arXiv:2401.15516 [gr-qc] .
- M. Giesler et al., (in preparation).
- H. Zhu et al., (2024b), arXiv:2404.12424 [gr-qc] .
- S. W. Hawking and J. B. Hartle, Commun. Math. Phys. 27, 283 (1972).
- S. A. Teukolsky and W. H. Press, Astrophys. J. 193, 443 (1974).
- E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962).
- E. Poisson, Phys. Rev. D 70, 084044 (2004), arXiv:gr-qc/0407050 [gr-qc] .
- J. Ripley and Z. Hengrui, “Jlripley314/teukevolution.jl: v0.1,” (2023).
- J. L. Ripley, Class. Quant. Grav. 39, 145009 (2022), arXiv:2202.03837 [gr-qc] .
- L. C. Stein, J. Open Source Softw. 4, 1683 (2019), arXiv:1908.10377 [gr-qc] .
- R. H. Price and K. S. Thorne, Phys. Rev. D 33, 915 (1986).
- S. Chandrasekhar, The mathematical theory of black holes (1985).
- W. Kinnersley, J. Math. Phys. 10, 1195 (1969).
- E. Poisson, A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics (Cambridge University Press, 2009).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.