Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Classical Acceleration Temperature (CAT) in a Box (2405.04553v1)

Published 6 May 2024 in physics.class-ph, gr-qc, hep-th, and quant-ph

Abstract: A confined, slow-moving, accelerating electron is shown to emit thermal radiation. Since laboratories face spatial constraints when dealing with rectilinear motion, focusing on a finite total travel distance combines the benefits of simple theoretical analysis with prospects for table-top experimentation. We demonstrate an accelerated moving charge along an asymptotically static worldline with fixed transit distance and slow maximum speed, emitting self-consistent analytic power, spectra, and energy. The classical radiation is Planck distributed with an associated acceleration temperature. This is the first fully parametrized, spectrum-solved, finite-distance worldline.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. S. Hawking, Particle creation by black holes, Commun. Math. Phys. 43, 199 (1975).
  2. B. S. DeWitt, Quantum field theory in curved space-time, Phys. Rept. 19, 295 (1975).
  3. S. A. Fulling and P. C. W. Davies, Radiation from a moving mirror in two dimensional space-time: Conformal anomaly, Proc. R. Soc. Lond. A 348, 393 (1976).
  4. P. Davies and S. Fulling, Radiation from moving mirrors and from black holes, Proc. R. Soc. Lond. A A356, 237 (1977).
  5. E. Ievlev, Moving mirrors and event horizons in asymptotically non-flat spacetimes,   (2023), arXiv:2311.07403 [gr-qc] .
  6. K.-N. Lin and P. Chen, Particle production by a relativistic semitransparent mirror of finite size and thickness, Eur. Phys. J. C 84, 53 (2024), arXiv:2107.09033 [gr-qc] .
  7. P. Kumar, I. A. Reyes, and J. Wintergerst, Relativistic dynamics of moving mirrors in CFT2subscriptCFT2\text{CFT}_{2}CFT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT: Quantum backreaction and black holes, Phys. Rev. D 109, 065010 (2024), arXiv:2310.03483 [hep-th] .
  8. A. Nikishov and V. Ritus, Emission of scalar photons by an accelerated mirror in (1+1) space and its relation to the radiation from an electrical charge in classical electrodynamics, J. Exp. Theor. Phys. 81, 615 (1995).
  9. V. I. Ritus, Finite value of the bare charge and the relation of the fine structure constant ratio for physical and bare charges to zero-point oscillations of the electromagnetic field in the vacuum, Usp. Fiz. Nauk 192, 507 (2022).
  10. E. Ievlev and M. R. R. Good, Non-thermal photons and a Fermi-Dirac spectral distribution, Phys. Lett. A 488, 129131 (2023), arXiv:2307.12860 [quant-ph] .
  11. E. Ievlev and M. R. R. Good, Thermal Larmor radiation, Progress of Theoretical and Experimental Physics , ptae042 (2024), arXiv:2303.03676 [gr-qc] .
  12. M. R. R. Good and P. C. W. Davies, Infrared acceleration radiation, Found. Phys. 53, 53 (2023), arXiv:2206.07291 [gr-qc] .
  13. M. H. Lynch, E. Ievlev, and M. R. R. Good, Accelerated electron thermometer: observation of 1D Planck radiation, Progress of Theoretical and Experimental Physics , ptad157 (2023), arXiv:2211.14774 [nucl-ex] .
  14. E. Ievlev, M. R. R. Good, and E. V. Linder, IR-finite thermal acceleration radiation, Annals Phys. 461, 169593 (2024), arXiv:2304.04412 [gr-qc] .
  15. W. R. Walker and P. C. W. Davies, An exactly soluble moving-mirror problem, Journal of Physics A: Mathematical and General 15, L477 (1982).
  16. M. R. R. Good and E. V. Linder, Slicing the vacuum: New accelerating mirror solutions of the dynamical Casimir effect, Phys. Rev. D 96, 125010 (2017), arXiv:1707.03670 [gr-qc] .
  17. M. R. Good and E. V. Linder, Finite Energy but infinite entropy production from moving mirrors, Phys. Rev. D 99, 025009 (2019), arXiv:1807.08632 [gr-qc] .
  18. M. R. R. Good and E. V. Linder, Stopping to reflect: Asymptotic static moving mirrors as quantum analogs of classical radiation, Phys. Lett. B 845, 138124 (2023), arXiv:2303.02600 [quant-ph] .
  19. M. R. Good, E. V. Linder, and F. Wilczek, Moving mirror model for quasithermal radiation fields, Phys. Rev. D 101, 025012 (2020), arXiv:1909.01129 [gr-qc] .
  20. M. R. R. Good and E. V. Linder, Modified Schwarzschild metric from a unitary accelerating mirror analog, New J. Phys. 23, 043007 (2021), arXiv:2003.01333 [gr-qc] .
  21. A. Moreno-Ruiz and D. Bermudez, Optical analogue of the Schwarzschild–Planck metric, Class. Quant. Grav. 39, 145001 (2022), arXiv:2112.00194 [gr-qc] .
  22. P. Chen and D.-h. Yeom, Entropy evolution of moving mirrors and the information loss problem, Phys. Rev. D 96, 025016 (2017).
  23. M. R. R. Good, P. R. Anderson, and C. R. Evans, Time dependence of particle creation from accelerating mirrors, Phys. Rev. D 88, 025023 (2013), arXiv:1303.6756 [gr-qc] .
  24. M. R. Good and E. V. Linder, Eternal and evanescent black holes and accelerating mirror analogs, Phys. Rev. D 97, 065006 (2018), arXiv:1711.09922 [gr-qc] .
  25. C. S. W. Chang and D. L. Falkoff, On the continuous gamma-radiation accompanying the beta-decay of nuclei, Phys. Rev. 76, 365 (1949).
  26. A. Zangwill, Modern electrodynamics (Cambridge Univ. Press, Cambridge, 2013).
  27. J. D. Jackson, Classical electrodynamics; 3rd ed. (Wiley, New York, NY, 1999).
  28. M. J. Bales et al. (RDK II), Precision measurement of the radiative β𝛽\betaitalic_β decay of the free neutron, Phys. Rev. Lett. 116, 242501 (2016), arXiv:1603.00243 [nucl-ex] .
  29. R. D. Carlitz and R. S. Willey, Reflections on moving mirrors, Phys. Rev. D 36, 2327 (1987).
  30. E. Bianchi and M. Smerlak, Entanglement entropy and negative energy in two dimensions, Phys. Rev. D 90, 041904 (2014), arXiv:1404.0602 [gr-qc] .
  31. International Bureau of Weights and Measures, The International System of Units (SI), 9th ed. (2019).
  32. M. R. R. Good and Y. C. Ong, Signatures of energy flux in particle production: a black hole birth cry and death gasp, JHEP 07, 145, arXiv:1506.08072 [gr-qc] .
  33. M. R. R. Good and Y. C. Ong, Electron as a tiny mirror: Radiation from a worldline with asymptotic inertia, Physics 5, 131 (2023), arXiv:2302.00266 [gr-qc] .
  34. S. W. Hawking, Black hole explosions, Nature 248, 30 (1974).
  35. M. R. R. Good, P. R. Anderson, and C. R. Evans, Mirror reflections of a black hole, Phys. Rev. D 94, 065010 (2016), arXiv:1605.06635 [gr-qc] .
  36. S. A. Fulling, Review of some recent work on acceleration radiation, J. of Mod. Optics 52, 2207 (2005).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: