Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Multitask methods for predicting molecular properties from heterogeneous data (2401.17898v2)

Published 31 Jan 2024 in physics.chem-ph and stat.ML

Abstract: Data generation remains a bottleneck in training surrogate models to predict molecular properties. We demonstrate that multitask Gaussian process regression overcomes this limitation by leveraging both expensive and cheap data sources. In particular, we consider training sets constructed from coupled-cluster (CC) and density functional theory (DFT) data. We report that multitask surrogates can predict at CC-level accuracy with a reduction to data generation cost by over an order of magnitude. Of note, our approach allows the training set to include DFT data generated by a heterogeneous mix of exchange-correlation functionals without imposing any artificial hierarchy on functional accuracy. More generally, the multitask framework can accommodate a wider range of training set structures -- including full disparity between the different levels of fidelity -- than existing kernel approaches based on $\Delta$-learning, though we show that the accuracy of the two approaches can be similar. Consequently, multitask regression can be a tool for reducing data generation costs even further by opportunistically exploiting existing data sources.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. M. E. Harding, T. Metzroth, J. Gauss,  and A. A. Auer, “Parallel calculation of ccsd and ccsd(t) analytic first and second derivatives,” Journal of Chemical Theory and Computation 4, 64–74 (2008).
  2. L. Ying, J. Yu,  and L. Ying, “Numerical methods for kohn–sham density functional theory,” Acta Numerica 28, 405–539 (2019).
  3. J. Perdew and K. Schmidt, “Jacob’s ladder of density functional approximations for the exchange-correlation energy,” in AIP Conference Proceedings (2001) presented at AIP Conference Proceedings 577.
  4. L. Goerigkab and S. Grimme, “A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions,” Physical Chemistry Chemical Physics 13, 6670–6688 (2011).
  5. A. M. Teale, T. Helgaker, A. Savin, C. Adano, B. Aradi, A. V. Arbuznikov, P. Ayers, E. J. Baerends, V. Barone, P. Calaminici, E. Cances, E. A. Carter, P. K. Chattaraj, H. Chermette, I. Ciofini, T. D. Crawford, F. De Proft, J. Dobson, C. Draxl, T. Frauenheim, E. Fromager, P. Fuentealba, L. Gagliardi, G. Galli, J. Gao, P. Geerlings, N. Gidopoulos, P. M. W. Gill, P. Gori-Giorgi, A. Görling, T. Gould, S. Grimme, O. Gritsenko, H. J. A. Jensen, E. R. Johnson, R. O. Jones, M. Kaupp, A. Koster, L. Kronik, A. I. Krylov, S. Kvaal, A. Laestadius, M. P. Levy, M. Lewin, S. Liu, P.-F. Loos, N. T. Maitra, F. Neese, J. Perdew, K. Pernal, P. Pernot, P. Piecuch, E. Rebolini, L. Reining, P. Romaniello, A. Ruzsinszky, D. Salahub, M. Scheffler, P. Schwerdtfeger, V. N. Staroverov, J. Sun, E. Tellgren, D. J. Tozer, S. Trickey, C. A. Ullrich, A. Vela, G. Vignale, T. A. Wesolowski, X. Xu,  and W. Yang, “Dft exchange: Sharing perspectives on the workhorse of quantum chemistry and materials science,” Physical Chemistry Chemical Physics  (2022), 10.1039/d2cp02827a.
  6. J. S. Smith, B. T. Nebgen, R. Zubatyuk, N. Lubbers, C. Devereux, K. Barros, S. Tretiak, O. Isayev,  and A. E. Roitberg, “Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning,” Nature Communications 10 (2019), 10.1038/s41467-019-10827-4.
  7. P. O. Dral, A. Owens, A. Dral,  and G. Csányi, “Hierarchical machine learning of potential energy surfaces,” The Journal of Chemical Physics 152 (2020), 10.1063/5.0006498.
  8. S. M. Goodlett, J. M. Turney,  and H. F. Schaefer, “Comparison of multifidelity machine learning models for potential energy surfaces,” The Journal of Chemical Physics 159 (2023), 10.1063/5.0158919.
  9. V. Zaverkin, D. Holzmüller, L. Bonfirraro,  and J. Kästner, “Transfer learning for chemically accurate interatomic neural network potentials,” Physical Chemistry Chemical Physics 25, 5383–5396 (2023).
  10. S. Curtarolo, W. Setyawan, G. L. Hart, M. Jahnatek, R. V. Chepulskii, R. H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M. J. Mehl, H. T. Stokes, D. O. Demchenko,  and D. Morgan, “Aflow: An automatic framework for high-throughput materials discovery,” Computational Materials Science 58, 218–226 (2012).
  11. A. Jain, G. Hautier, C. J. Moore, S. Ping Ong, C. C. Fischer, T. Mueller, K. A. Persson,  and G. Ceder, “A high-throughput infrastructure for density functional theory calculations,” Computational Materials Science 50, 2295–2310 (2011).
  12. S. P. Huber, S. Zoupanos, M. Uhrin, L. Talirz, L. Kahle, R. Häuselmann, D. Gresch, T. Müller, A. V. Yakutovich, C. W. Andersen, F. F. Ramirez, C. S. Adorf, F. Gargiulo, S. Kumbhar, E. Passaro, C. Johnston, A. Merkys, A. Cepellotti, N. Mounet, N. Marzari, B. Kozinsky,  and G. Pizzi, “Aiida 1.0, a scalable computational infrastructure for automated reproducible workflows and data provenance,” Scientific Data 7 (2020), 10.1038/s41597-020-00638-4.
  13. E. Cancès, A. Levitt, Y. Maday,  and C. Yang, “Numerical methods for kohn–sham models: Discretization, algorithms, and error analysis,” in Density Functional Theory: Modeling, Mathematical Analysis, Computational Methods, and Applications (Springer, 2022) pp. 333–400.
  14. M. F. Herbst and A. Levitt, “Black-box inhomogeneous preconditioning for self-consistent field iterations in density functional theory,” Journal of Physics: Condensed Matter  (2020), 10.1088/1361-648x/abcbdb.
  15. M. F. Herbst and A. Levitt, “A robust and efficient line search for self-consistent field iterations,” Journal of Computational Physics 459, 111127 (2022).
  16. E. Cancès, M. F. Herbst, G. Kemlin, A. Levitt,  and B. Stamm, “Numerical stability and efficiency of response property calculations in density functional theory,” Letters in Mathematical Physics 113 (2023), 10.1007/s11005-023-01645-3.
  17. L. Ruddigkeit, R. van Deursen, L. C. Blum,  and J.-L. Reymond, “Enumeration of 166 billion organic small molecules in the chemical universe database gdb-17,” Journal of Chemical Information and Modeling 52, 2864–2875 (2012), pMID: 23088335, https://doi.org/10.1021/ci300415d .
  18. R. Ramakrishnan, P. O. Dral, M. Rupp,  and O. A. von Lilienfeld, “Quantum chemistry structures and properties of 134 kilo molecules,” Scientific Data 1 (2014).
  19. L. Chanussot*, A. Das*, S. Goyal*, T. Lavril*, M. Shuaibi*, M. Riviere, K. Tran, J. Heras-Domingo, C. Ho, W. Hu, A. Palizhati, A. Sriram, B. Wood, J. Yoon, D. Parikh, C. L. Zitnick,  and Z. Ulissi, “Open catalyst 2020 (oc20) dataset and community challenges,” ACS Catalysis  (2021), 10.1021/acscatal.0c04525.
  20. J. Smith, O. Isayev,  and A. Roitberg, “A data set of 20 million calculated off-equilibrium conformations for organic molecules,” Scientific Data 4 (2017).
  21. E. Bonilla, K. Chai,  and C. Williams, “Multi-task gaussian process prediction,” in Advances in neural information processing systems, edited by J. Platt, D. Koller, Y. Singer,  and S. Roweis (MIT Press, Cambridge, Massachusetts, 2008) pp. 153–160.
  22. G. Leen, J. Peltonen,  and S. Kaski, “Focused multi-task learning in a gaussian process framework,” Machine Learning 1-2, 157–182 (2012).
  23. G. Pilania, J. Gubernatis,  and T. Lookman, “Multi-fidelity machine learning models for accurate bandgap predictions of solids,” Computational Materials Science 129, 156–162 (2017).
  24. R. Batra, G. Pilania, B. Uberuaga,  and R. Ramprasad, “Multifidelity information fusion with machine learning: A case study of dopant formation energies in hafnia,” ACS Applied Materials & Inference 11, 24906–24918 (2019).
  25. M. Kennedy and A. O’Hagan, “Predicting the output from a complex computer code when fast approximations are available,” Biometrika 87, 1–13 (2000).
  26. R. Ramakrishnan, P. O. Dral, M. Rupp,  and O. A. von Lilienfeld, “Big data meets quantum chemistry approximations: The ΔΔ\Deltaroman_Δ-machine learning approach,” Journal of Chemical Theory and Computation 11, 2087–2096 (2015).
  27. P. O. Dral, T. Zubatiuk,  and B.-X. Xue, “Learning from multiple quantum chemical methods: δ𝛿\deltaitalic_δ-learning, transfer learning, co-kriging, and beyond,” in Quantum Chemistry in the Age of Machine Learning (Elsevier, 2023) pp. 491–507.
  28. V. Vinod, U. Kleinekathöfer,  and P. Zaspel, “Optimized multifidelity machine learning for quantum chemistry,”  (2023), arXiv:2312.05661 [physics.chem-ph] .
  29. G. G. Towell and J. W. Shavlik, “Knowledge-based artificial neural networks,” Artificial Intelligence 70, 119–165 (1994).
  30. L.-M. Fu, “Integration of neural heuristics into knowledge-based inference,” in International 1989 Joint Conference on Neural Networks (1989) pp. 606 vol.2–.
  31. P. L. Bartlett, A. Montanari,  and A. Rakhlin, “Deep learning: a statistical viewpoint,” Acta Numerica 30, 87–201 (2021).
  32. S. Lotfi, M. Finzi, S. Kapoor, A. Potapczynski, M. Goldblum,  and A. G. Wilson, “Pac-bayes compression bounds so tight that they can explain generalization,”  (2022), arXiv:2211.13609 [cs.LG] .
  33. C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning (the MIT Press, 2006).
  34. J. Quinonero-Candela and C. Rasmussen, “A unifying view of sparse approximate gaussian process regression,” Journal of Machine Learning Research 6, 1939–1959 (2005).
  35. H. Liu, Y.-S. Ong, X. Shen,  and J. Cai, “When gaussian process meets big data: A review of scalable gps,”  (2018).
  36. A. G. Wilson, C. Dann,  and H. Nickisch, “Thoughts on massively scalable gaussian processes,” CoRR abs/1511.01870 (2015), 1511.01870 .
  37. D. A. Cole, R. B. Christianson,  and R. B. Gramacy, “Locally induced gaussian processes for large-scale simulation experiments,” Statistics and Computing 31, 1573–1375 (2021).
  38. P. Abrahamsen, “A review of gaussian random fields and correlation functions,”   (1997), 10.13140/RG.2.2.23937.20325.
  39. A. P. Bartók, M. C. Payne, R. Kondor,  and G. Csányi, “Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons,” Physical Review Letters 104 (2010), 10.1103/physrevlett.104.136403.
  40. A. P. Bartók, R. Kondor,  and G. Csányi, “On representing chemical environments,” Physical Review B 87, 184115 (2013).
  41. A. P. Bartók and G. Csányi, “Gaussian approximation potentials: A brief tutorial introduction,” International Journal of Quantum Chemistry 115, 1051–1057 (2015).
  42. M. Chen, H.-Y. Ko, R. Remsing, M. Andrade, B. Santra, Z. Sun, A. Selloni, R. Car, M. Klein, J. Perdew,  and W. Xifan, “Ab initio theory and modeling of water,” Proceedings of the National Academy of Sciences 114, 201712499 (2017).
  43. S. Dasgupta, E. Lambros, J. Perdew,  and F. Paesani, “Elevating density functional theory to chemical accuracy for water simulations through a density-corrected many-body formalism,”   (2021), 10.33774/chemrxiv-2021-hstgf.
  44. M. J. Gillan, D. Alfè,  and A. Michaelides, “Perspective: How good is DFT for water?” The Journal of Chemical Physics 144, 130901 (2016), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.4944633/13696839/130901_1_online.pdf .
  45. Q. Yu, C. Qu, P. L. Houston, R. Conte, A. Nandi,  and J. M. Bowman, “q-aqua: A many-body ccsd(t) water potential, including four-body interactions, demonstrates the quantum nature of water from clusters to the liquid phase,” The Journal of Physical Chemistry Letters 13, 5068–5074 (2022), pMID: 35652912.
  46. D. G. A. Smith, L. A. Burns, A. C. Simmonett, R. M. Parrish, M. C. Schieber, R. Galvelis, P. Kraus, H. Kruse, R. Di Remigio, A. Alenaizan, A. M. James, S. Lehtola, J. P. Misiewicz, M. Scheurer, R. A. Shaw, J. B. Schriber, Y. Xie, Z. L. Glick, D. A. Sirianni, J. S. O’Brien, J. M. Waldrop, A. Kumar, E. G. Hohenstein, B. P. Pritchard, B. R. Brooks, I. Schaefer, Henry F., A. Y. Sokolov, K. Patkowski, I. DePrince, A. Eugene, U. Bozkaya, R. A. King, F. A. Evangelista, J. M. Turney, T. D. Crawford,  and C. D. Sherrill, “PSI4 1.4: Open-source software for high-throughput quantum chemistry,” The Journal of Chemical Physics 152, 184108 (2020), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0006002/16684807/184108_1_online.pdf .
  47. J. P. Perdew, K. Burke,  and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
  48. J. Sun, A. Ruzsinszky,  and J. P. Perdew, “Strongly constrained and appropriately normed semilocal density functional,” Phys. Rev. Lett. 115, 036402 (2015).
  49. A. J. A. Price, K. R. Bryenton,  and E. R. Johnson, “Requirements for an accurate dispersion-corrected density functional,” The Journal of Chemical Physics 154, 230902 (2021).
  50. X. Huang, B. J. Braams,  and J. M. Bowman, “Ab initio potential energy and dipole moment surfaces of (h2o)2,” The Journal of Physical Chemistry A 110, 445–451 (2006), pMID: 16405316, https://doi.org/10.1021/jp053583d .
  51. C. Duan, K. Fisher,  and H. Kulik, “kefisher98/IP_EA_deltaSCF: Ionization Potential, Electron Affinity, and Delta SCF for Small Organic Molecules,”  (2023).
  52. C. Duan, F. Liu, A. Nandy,  and H. J. Kulik, “Data-driven approaches can overcome the cost–accuracy trade-off in multireference diagnostics,” Journal of Chemical Theory and Computation 16, 4373–4387 (2020).
  53. C. Duan, S. Chen, M. G. Taylor, F. Liu,  and H. J. Kulik, “Machine learning to tame divergent density functional approximations: a new path to consensus materials design principles,” Chem. Sci. 12, 13021–13036 (2021).
  54. E. Brémond and C. Adamo, “Seeking for parameter-free double-hybrid functionals: The PBE0-DH model,” The Journal of Chemical Physics 135, 024106 (2011).
  55. C. Adamo and V. Barone, “Toward reliable density functional methods without adjustable parameters: The PBE0 model,” J. Chem. Phys.  110, 6158–6170 (1999).
  56. C. Lee, W. Yang,  and R. G. Parr, “Development of the colle-salvetti correlation-energy formula into a functional of the electron density,” Phys. Rev. B 37, 785–789 (1988).
  57. S. De, A. P. Bartók, G. Csányi,  and M. Ceriotti, “Comparing molecules and solids across structural and alchemical space,” Physical Chemistry Chemical Physics 18, 13754–13769 (2016).
  58. V. Deringer, A. Bartók, N. Bernstein, D. Wilkins, M. Ceriotti,  and G. Csányi, “Gaussian process regression for materials and modelling,” Chemical Reviews 121, 10073–10041 (2021).
  59. F. Musil, A. Grisafi, A. P. Bartók, C. Ortner, G. Csányi,  and M. Ceriotti, “Physics-inspired structural representations for molecules and materials,” Chemical Reviews 121, 9759–9815 (2021).
  60. A. I. J. Forrester and A. J. K. A. Sóbester, “Multi-fidelity optimization via surrogate modelling,” Proceedings of Royal Society A 463, 3251–3269 (2007).
  61. A. Reuther, J. Kepner, C. Byun, S. Samsi, W. Arcand, D. Bestor, B. Bergeron, V. Gadepally, M. Houle, M. Hubbell, M. Jones, A. Klein, L. Milechin, J. Mullen, A. Prout, A. Rosa, C. Yee,  and P. Michaleas, “Interactive supercomputing on 40,000 cores for machine learning and data analysis,” in 2018 IEEE High Performance extreme Computing Conference (HPEC) (IEEE, 2018) pp. 1–6.
  62. B. Civalleri, D. Presti, R. Dovesi,  and A. Savin, “On choosing the best density functional approximation,” in Uncertainty Quantification in Multiscale Materials Modeling, edited by M. Springborg (RSC Publishing, 2012) Chap. 6, pp. 168–185.
  63. L. Himanen, M. O. J. Jäger, E. V. Morooka, F. Federici Canova, Y. S. Ranawat, D. Z. Gao, P. Rinke,  and A. S. Foster, “DScribe: Library of descriptors for machine learning in materials science,” Computer Physics Communications 247, 106949 (2020).
Citations (4)

Summary

  • The paper introduces a multitask Gaussian process regression framework that integrates heterogeneous data sources to predict molecular properties.
  • Experiments on water trimers and organic molecules show improved performance compared to single-task and Δ-learning models using flexible training sets.
  • The study highlights cost reduction and enhanced accuracy by efficiently combining high-fidelity and low-fidelity data in computational material science.

Multitask Methods for Predicting Molecular Properties from Heterogeneous Data

Introduction to Multitask Gaussian Process Regression

Predicting molecular properties accurately remains a challenge due to the scaling complexities of quantum-mechanical calculations, such as the Schrödinger equation. Multitask Gaussian process regression (GPR) offers a pathway to leverage multiple data sources, combining high-cost, high-fidelity data (like coupled-cluster computations) with more affordable, lower fidelity data (such as density functional theory calculations). This approach enables prediction accuracy akin to the high-cost method while significantly lowering data generation costs. It achieves this by using a framework that can incorporate heterogeneous data from various sources without imposing a hierarchy on the functional accuracy, overcoming limitations of traditional kernel-based methods like Δ\Delta-learning. Figure 1

Figure 1: Diagram of training data sets compatible with the considered methods. The Core, Additional, and Target systems are related to the primary method (CCSD(T)) and various secondary methods.

Statistical Models and Methods

Gaussian Process Regression

GPR models predict the value of a quantity, f(X)f(\bm{X}), using noisy observations Yi=f(Xi)+εi\bm{Y}_i = f(\bm{X}_i) + \varepsilon_i. This involves selecting a mean function μ(X)\mu(\bm{X}) and a kernel function k(,)k(\cdot, \cdot), which define the covariance matrix used for inference. The result is a posterior distribution allowing prediction of target values conditioned on observations.

Multifidelity and Multitask Modeling

The multifidelity approach models relationships between high and low fidelity data using scaling parameters and disparity functions, while multitask modeling considers multiple Gaussian process tasks with shared and specific components related through a primary function. Multitask regression facilitates flexible data integration, useful for datasets from heterogeneous methods, as shown in Fig. 1.

Experimental Setup for Multitask Regression

Data Generation

Two case studies illustrate the approach: predicting three-body interaction energies in water trimers and ionization potential for small organic molecules. For water trimers, secondary data was generated using DFT with PBE and SCAN functionals, whereas for organic molecules, ionization potential was calculated using various functionals including PBE0, PBE0_DH, and BLYP.

Performance Metrics and Flexible Training Sets

Multitask modeling performs better than single task regression models across different training set configurations. Training sets are structured to include different combinations of Core (C), Additional (A), and Target (T) data, with varying overlap between secondary tasks. Figure 2

Figure 2

Figure 2: Example data set structures. Different molecule configurations are used for various training tasks.

Key Advantages and Experimental Results

Multitask Flexibility and Results

An experiment comparing multitask models to single task models demonstrated consistent improvement, especially when secondary data overlaps with target predictions. Tests show benefits in incorporating multiple secondary tasks, with a focus on efficiency and flexibility in training set design. Figure 3

Figure 3

Figure 3

Figure 3: Correlation between different methods of global feature construction.

Comparison to Δ\Delta-learning

Multitask methods outperform Δ\Delta-learning when modeling and predicting differences between quantum chemical methods. The flexibility of multitask framework allows the use of multiple datasets without an arbitrary order, enhancing model performance.

Conclusion

Multitask GPR provides a robust framework for integrating heterogeneous data, reducing costs and enhancing prediction accuracy for molecular properties. The flexibility in training sets and the correlation-based integration of secondary tasks make it a valuable tool in computational material science, with potential for further exploration in neural networks and transfer learning contexts. Future work could optimize correlation parameters to refine the multitask Δ\Delta option further, ensuring that it always outperforms traditional Δ\Delta models.