2000 character limit reached
Trained MT Metrics Learn to Cope with Machine-translated References
Published 1 Dec 2023 in cs.CL | (2312.00536v1)
Abstract: Neural metrics trained on human evaluations of MT tend to correlate well with human judgments, but their behavior is not fully understood. In this paper, we perform a controlled experiment and compare a baseline metric that has not been trained on human evaluations (Prism) to a trained version of the same metric (Prism+FT). Surprisingly, we find that Prism+FT becomes more robust to machine-translated references, which are a notorious problem in MT evaluation. This suggests that the effects of metric training go beyond the intended effect of improving overall correlation with human judgments.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.