Strong unidirectional Rashba state induced by extended vacancy line defects in a $1T'$-WTe$_{2}$ monolayer
Abstract: The correlation between spin-orbit coupling and low crystal symmetry in the $1T'$ phase of the tungsten ditellurides (WTe${2}$) monolayer (ML) plays a significant role in its electronic and topological properties. However, the centrosymmetric nature of the crystal maintains Kramer's spin degeneracy in its electronic states, which limits its functionality in spintronics. In this paper, through a systematic study using first-principles calculations, we show that significant spin splitting can be induced in the $1T'$-WTe${2}$ ML by introducing one dimensional (1D) vacancy line defect (VLD). We examine six configurations of the 1D VLD, which consist of three VLDs extended in the armchair direction including a Te${1}$ armchair-VLD ($ACV{\texttt{Te}{1}}$), Te${2}$ armchair-VLD ($ACV_{\texttt{Te}{2}}$), and W armchair-VLD ($ACV{\texttt{W}}$); and three VLDs elongated along the zigzag direction comprising a Te${1}$ zigzag-VLD ($ZZV{\texttt{Te}{1}}$), Te${2}$ zigzag-VLD ($ZZV_{\texttt{Te}{2}}$), and W zigzag-VLD ($ZZV{\texttt{W}}$), where Te${1}$ and Te${2}$ are two nonequivalent Te atoms located at the lower and higher sites in the top layer, respectively. We find that both the $ACV_{\texttt{Te}{1}}$ and $ACV{\texttt{W}}$ systems have the lowest formation energy. Concerning these two most stable VLD systems, we identify large spin splitting in the defect states near the Fermi level driven by a strong coupling of the in-plane $p-d$ orbitals, displaying highly unidirectional Rashba states with perfectly collinear spin configurations in the momentum space. This unique spin configuration gives rise to a specific spin mode that protects the spin from decoherence and leads to an exceptionally long spin lifetime...........
- D. Voiry, A. Mohite, and M. Chhowalla, Phase engineering of transition metal dichalcogenides, Chem. Soc. Rev. 44, 2702 (2015).
- U. Patil and N. M. Caffrey, Composition dependence of the charge-driven phase transition in group-vi transition metal dichalcogenides, Phys. Rev. B 100, 075424 (2019).
- Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschlögl, Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors, Phys. Rev. B 84, 153402 (2011).
- K. Kośmider, J. W. González, and J. Fernández-Rossier, Large spin splitting in the conduction band of transition metal dichalcogenide monolayers, Phys. Rev. B 88, 245436 (2013).
- M. A. Cazalilla, H. Ochoa, and F. Guinea, Quantum spin hall effect in two-dimensional crystals of transition-metal dichalcogenides, Phys. Rev. Lett. 113, 077201 (2014).
- Y.-M. Xie, B. T. Zhou, and K. T. Law, Spin-orbit-parity-coupled superconductivity in topological monolayer wte2subscriptwte2{\mathrm{wte}}_{2}roman_wte start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, Phys. Rev. Lett. 125, 107001 (2020).
- H.-Y. Song and J.-T. Lü, Single-site point defects in semimetal WTe2: A density functional theory study, AIP Advances 8, 125323 (2018).
- M. I. Dyakonov and V. I. Perel, . spin relaxation of conduction electrons in noncentrosymmetric semiconductors, Sov. Phys. Solid State 13, 3023 (1972).
- J. Schliemann, J. C. Egues, and D. Loss, Nonballistic spin-field-effect transistor, Phys. Rev. Lett. 90, 146801 (2003).
- B. A. Bernevig, J. Orenstein, and S.-C. Zhang, Exact su(2) symmetry and persistent spin helix in a spin-orbit coupled system, Phys. Rev. Lett. 97, 236601 (2006).
- J. Schliemann, Colloquium: Persistent spin textures in semiconductor nanostructures, Rev. Mod. Phys. 89, 011001 (2017).
- T. Ozaki, Variationally optimized atomic orbitals for large-scale electronic structures, Phys. Rev. B 67, 155108 (2003).
- T. Ozaki and H. Kino, Numerical atomic basis orbitals from h to kr, Phys. Rev. B 69, 195113 (2004).
- T. Ozaki and H. Kino, Efficient projector expansion for the ab initio lcao method, Phys. Rev. B 72, 045121 (2005).
- J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996).
- W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133 (1965).
- H. Kotaka, F. Ishii, and M. Saito, Rashba effect on the structure of the bi one-bilayer film: Fully relativistic first-principles calculation, Japanese Journal of Applied Physics 52, 035204 (2013).
- W.-F. Li, C. Fang, and M. A. van Huis, Strong spin-orbit splitting and magnetism of point defect states in monolayer ws2subscriptws2{\mathrm{ws}}_{2}roman_ws start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, Phys. Rev. B 94, 195425 (2016).
- H.-P. Komsa and A. V. Krasheninnikov, Native defects in bulk and monolayer mos2subscriptmos2{\mathrm{mos}}_{2}roman_mos start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT from first principles, Phys. Rev. B 91, 125304 (2015).
- J.-Y. Noh, H. Kim, and Y.-S. Kim, Stability and electronic structures of native defects in single-layer mos2subscriptmos2{\mathrm{mos}}_{2}roman_mos start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, Phys. Rev. B 89, 205417 (2014).
- S. Sheoran, P. Bhumla, and S. Bhattacharya, Emergence of cubic ordered full-plane persistent spin textures in lead-free materials, Phys. Rev. Mater. 6, 094602 (2022).
- M. K. Mohanta and P. Jena, Symmetry-driven persistent spin texture for the two-dimensional nonsymmorphic cdte and znte crystal structures, Phys. Rev. B 108, 085432 (2023).
- M. A. U. Absor and F. Ishii, Doping-induced persistent spin helix with a large spin splitting in monolayer snse, Phys. Rev. B 99, 075136 (2019b).
- C. L. Kane and E. J. Mele, Quantum spin hall effect in graphene, Phys. Rev. Lett. 95, 226801 (2005).
- T. Fukui and Y. Hatsugai, Quantum spin hall effect in three dimensional materials: Lattice computation of z2 topological invariants and its application to bi and sb, Journal of the Physical Society of Japan 76, 053702 (2007).
- H. Sawahata, N. Yamaguchi, and F. Ishii, Electric-field-induced z2 topological phase transition in strained single bilayer bi(111), Applied Physics Express 12, 075009 (2019).
- L. Fu and C. L. Kane, Topological insulators with inversion symmetry, Phys. Rev. B 76, 045302 (2007).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.