Mesoscale modeling of deformations and defects in thin crystalline sheets
Abstract: We present a mesoscale description of deformations and defects in thin, flexible sheets with crystalline order, tackling the interplay between in-plane elasticity, out-of-plane deformation, as well as dislocation nucleation and motion. Our approach is based on the Phase-Field Crystal (PFC) model, which describes the microscopic atomic density in crystals at diffusive timescales, naturally encoding elasticity and plasticity effects. In its amplitude expansion (APFC), a coarse-grained description of the mechanical properties of crystals is achieved. We introduce surface PFC and surface APFC models in a convenient height-function formulation encoding deformation in the normal direction. This framework is proven consistent with classical aspects of strain-induced buckling, defect nucleation on deformed surfaces, and out-of-plane relaxation near dislocations. In particular, we benchmark and discuss the results of numerical simulations by looking at the continuum limit for buckling under uniaxial compression and at evidence from microscopic models for deformation at defects and defect arrangements, demonstrating the scale-bridging capabilities of the proposed framework. Results concerning the interplay between lattice distortion at dislocations and out-of-plane deformation are also illustrated by looking at the annihilation of dislocation dipoles and systems hosting many dislocations. With the novel formulation proposed here, and its assessment with established approaches, we envision applications to multiscale investigations of crystalline order on deformable surfaces.
- A continuum model of colloid-stabilized interfaces. Physics of Fluids, 23(6):062103, 06 2011. doi: 10.1063/1.3584815.
- Particles at fluid-fluid interfaces: A new navier-stokes-cahn-hilliard surface- phase-field-crystal model. Phys. Rev. E, 86:046321, Oct 2012a. doi: 10.1103/PhysRevE.86.046321.
- Buckling instability of viral capsids—a continuum approach. Multiscale Modeling & Simulation, 10(1):82–110, 2012b. doi: 10.1137/110834718.
- Theory of Dislocations. Cambridge University Press, 2017.
- Tailoring the mechanical properties of 2d materials and heterostructures. 2D Materials, 5(3):032005, 2018. doi: 10.1088/2053-1583/aac764.
- Deriving phase field crystal theory from dynamical density functional theory: Consequences of the approximations. Physical Review E, 100:022140, Aug 2019. doi: 10.1103/PhysRevE.100.022140.
- Discrete dislocations in graphene. Journal of the Mechanics and Physics of Solids, 58(5):710–734, 2010. doi: 10.1016/j.jmps.2010.02.008.
- Renormalization-group theory for the phase-field crystal equation. Physical Review E, 74(1):011601, 2006. doi: 10.1103/PhysRevE.74.011601.
- Particles on curved surfaces: A dynamic approach by a phase-field-crystal model. Physical Review E, 81:025701, Feb 2010. doi: 10.1103/PhysRevE.81.025701.
- A Continuous Approach to Discrete Ordering on 𝕊2superscript𝕊2\mathbb{S}^{2}blackboard_S start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. Multiscale Modeling & Simulation, 9(1):314–334, 2011. doi: 10.1137/100787532.
- A comparison of different approaches to enforce lattice symmetry in two-dimensional crystals. PAMM, 20(1):e202000192, 2021. doi: 10.1002/pamm.202000192.
- Grain boundary scars and spherical crystallography. Science, 299(5613):1716–1718, 2003. doi: 10.1126/science.1081160.
- Gradient elasticity in swift-hohenberg and phase-field crystal models, 2024.
- Phase field crystal modeling as a unified atomistic approach to defect dynamics. Phys. Rev. B, 89:214117, Jun 2014. doi: 10.1103/PhysRevB.89.214117.
- Computer simulations of dislocations, volume 3. OUP Oxford, 2006.
- Certaine, J. The solution of ordinary differential equations with large time constants. In Mathematical Methods for Digital Computers, pages 128–132, New York, 1960. Wiley.
- Fatigue of graphene. Nature Materials, 19(4):405–411, 2020. doi: 10.1038/s41563-019-0586-y.
- Twisted Bilayer Graphene: Moiré with a Twist. Nano Letters, 16(9):5923–5927, 2016. doi: 10.1021/acs.nanolett.6b02870.
- Amplitude expansion of the phase-field crystal model for complex crystal structures. Physical Review Materials, 7:033804, Mar 2023. doi: 10.1103/PhysRevMaterials.7.033804.
- Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Physical Review E, 70(5):051605, 2004. doi: 10.1103/PhysRevE.70.051605.
- Modeling Elasticity in Crystal Growth. Physical Review Letters, 88(24):245701, 2002. doi: 10.1103/PhysRevLett.88.245701.
- Phase-field crystal modeling and classical density functional theory of freezing. Physical Review B, 75(6):064107, 2007. doi: 10.1103/PhysRevB.75.064107.
- Amplitude expansion of the binary phase-field-crystal model. Phys. Rev. E, 81(1):011602, 2010. doi: 10.1103/PhysRevE.81.011602.
- Modeling buckling and topological defects in stacked two-dimensional layers of graphene and hexagonal boron nitride. Physical Review Materials, 5(3):034004, 2021. doi: 10.1103/PhysRevMaterials.5.034004.
- Moiré patterns and inversion boundaries in graphene/hexagonal boron nitride bilayers. Physical Review Materials, 7:024003, Feb 2023. doi: 10.1103/PhysRevMaterials.7.024003.
- Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: An overview. Advances in Physics, 61(6):665–743, 2012. doi: 10.1080/00018732.2012.737555.
- A method for building self-folding machines. Science, 345(6197):644–646, 2014. doi: 10.1126/science.1252610.
- The Design and Implementation of FFTW3. Proceedings of the IEEE, 93(2):216–231, 2005. doi: 10.1109/JPROC.2004.840301.
- Renormalization group approach to multiscale simulation of polycrystalline materials using the phase field crystal model. Physical Review E, 72(2):020601, 2005. doi: 10.1103/PhysRevE.72.020601.
- Dynamics of fluctuations and thermal buckling in graphene from a phase-field crystal model. Physical Review B, 107:035428, Jan 2023. doi: 10.1103/PhysRevB.107.035428.
- Gauge field induced by ripples in graphene. Physical Review B, 77(20):205421, 2008. doi: 10.1103/PhysRevB.77.205421.
- Phase-field-crystal models and mechanical equilibrium. Physical Review E, 89(3):032411, 2014. doi: 10.1103/PhysRevE.89.032411.
- Consistent Hydrodynamics for Phase Field Crystals. Physical Review Letters, 116(2):024303, 2016. doi: 10.1103/PhysRevLett.116.024303.
- Helfrich, W. Elastic properties of lipid bilayers: Theory and possible experiments. Zeitschrift für Naturforschung C, 28(11-12):693–703, 1973. doi: 10.1515/znc-1973-11-1209.
- Monte Carlo study of crystalline order and defects on weakly curved surfaces. Physical Review E, 76(5):051604, 2007. doi: 10.1103/PhysRevE.76.051604.
- Energetics and structure of grain boundary triple junctions in graphene. Scientific Reports, 7(1):4754, 2017. doi: 10.1038/s41598-017-04852-w.
- A review of stimuli-responsive polymers for smart textile applications. Smart Materials and Structures, 21(5):053001, 2012. doi: 10.1088/0964-1726/21/5/053001.
- Nonlinear elastic effects in phase field crystal and amplitude equations: Comparison to ab initio simulations of bcc metals and graphene. Physical Review B, 93(21):214105, 2016. doi: 10.1103/PhysRevB.93.214105.
- Stability of dislocation defect with two pentagon-heptagon pairs in graphene. Physical Review B, 78(16):165403, 2008. doi: 10.1103/PhysRevB.78.165403.
- Orientation gradients in rapidly solidified pure aluminum thin films: Comparison of experiments and phase-field crystal simulations. Phys. Rev. Lett., 127:205701, Nov 2021. doi: 10.1103/PhysRevLett.127.205701.
- Controlling the shape and topology of two-component colloidal membranes. Proceedings of the National Academy of Sciences, 119(32):e2204453119, 2022. doi: 10.1073/pnas.2204453119.
- Stress Induced Branching of Growing Crystals on Curved Surfaces. Physical Review Letters, 116(13):135502, 2016. doi: 10.1103/PhysRevLett.116.135502.
- Kubin, L. Dislocations, mesoscale simulations and plastic flow, volume 5. Oxford University Press, USA, 2013.
- Detailed formation processes of stable dislocations in graphene. Nanoscale, 6:14836–14844, 2014. doi: 10.1039/C4NR04718D.
- Atomic scale study of the life cycle of a dislocation in graphene from birth to annihilation. Nature Communications, 4:2098, 2013. doi: 10.1038/ncomms3098.
- Structure, energy, and structural transformations of graphene grain boundaries from atomistic simulations. Carbon, 49(7):2306–2317, 2011. doi: 10.1016/j.carbon.2011.01.063.
- Exploring the Complex World of Two-Dimensional Ordering with Three Modes. Physical Review Letters, 111:035501, 2013. doi: 10.1103/PhysRevLett.111.035501.
- A comprehensive review on recent advances in two-dimensional (2d) hexagonal boron nitride. ACS Applied Electronic Materials, 3(12):5165–5187, 12 2021. doi: 10.1021/acsaelm.1c00720.
- Liquid crystals on deformable surfaces. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 476(2241):20200313, 2020. doi: 10.1098/rspa.2020.0313.
- Tangential tensor fields on deformable surfaces–how to derive consistent L2-gradient flows. IMA Journal of Applied Mathematics, page hxae006, 02 2024. doi: 10.1093/imamat/hxae006.
- Geometry, Mechanics, and Electronics of Singular Structures and Wrinkles in Graphene. Physical Review Letters, 105(15):156603, 2010. doi: 10.1103/PhysRevLett.105.156603.
- Pope, D. A. An exponential method of numerical integration of ordinary differential equations. Commun. ACM, 6(8):491–493, aug 1963. doi: 10.1145/366707.367592.
- An efficient numerical framework for the amplitude expansion of the phase-field crystal model. Model. Simul. Mater. Sci. Eng., 27(4):044004, 2019. doi: 10.1088/1361-651X/ab1508.
- Understanding materials microstructure and behavior at the mesoscale. MRS Bulletin, 40(11):951–960, 2015. doi: 10.1557/mrs.2015.262.
- On Structured Surfaces with Defects: Geometry, Strain Incompatibility, Stress Field, and Natural Shapes. Journal of Elasticity, 131(2):239–276, 2018. doi: 10.1007/s10659-017-9654-1.
- Coarse-grained modeling of crystals by the amplitude expansion of the phase-field crystal model: An overview. Modelling and Simulation in Materials Science and Engineering, 30(5):053001, 2022. doi: 10.1088/1361-651X/ac681e.
- Closing the gap between atomic-scale lattice deformations and continuum elasticity. npj Computational Materials, 5(1):1–9, 2019. doi: 10.1038/s41524-019-0185-0.
- A coarse-grained phase-field crystal model of plastic motion. Journal of the Mechanics and Physics of Solids, 137:103856, 2020. doi: 10.1016/j.jmps.2019.103856.
- Mesoscale Defect Motion in Binary Systems: Effects of Compositional Strain and Cottrell Atmospheres. Physical Review Letters, 126(18):185502, 2021. doi: 10.1103/PhysRevLett.126.185502.
- Defects in flexible membranes with crystalline order. Physical Review A, 38(2):1005–1018, 1988. doi: 10.1103/PhysRevA.38.1005.
- Interaction of a defect with the reference curvature of an elastic surface. Soft Matter, 18(15):2979–2991, 2022a. doi: 10.1039/D2SM00126H.
- Defects and metric anomalies in föppl–von kármán surfaces. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 478(2262):20210829, 2022b. doi: 10.1098/rspa.2021.0829.
- Separation of Elastic and Plastic Timescales in a Phase Field Crystal Model. Physical Review Letters, 121(25):255501, 2018a. doi: 10.1103/PhysRevLett.121.255501.
- Dislocation dynamics and crystal plasticity in the phase-field crystal model. Physical Review B, 97(5):054113, 2018b. doi: 10.1103/PhysRevB.97.054113.
- Stress in ordered systems: Ginzburg-Landau-type density field theory. Physical Review B, 103(22):224107, 2021. doi: 10.1103/PhysRevB.103.224107.
- A phase field crystal theory of the kinematics of dislocation lines. Journal of the Mechanics and Physics of Solids, 166:104932, 2022a. doi: 10.1016/j.jmps.2022.104932.
- Hydrodynamic phase field crystal approach to interfaces, dislocations, and multi-grain networks. Modelling and Simulation in Materials Science and Engineering, 30(8):084002, 2022b. doi: 10.1088/1361-651X/ac9493.
- A unified field theory of topological defects and non-linear local excitations. npj Computational Materials, 9(1):122, 2023. doi: 10.1038/s41524-023-01077-6.
- Phase-Field Crystals with Elastic Interactions. Physical Review Letters, 96(22):225504, 2006. doi: 10.1103/PhysRevLett.96.225504.
- Biomimetic 4D printing. Nature Materials, 15(4):413–418, 2016. doi: 10.1038/nmat4544.
- Atomistic simulations of mechanical properties and fracture of graphene: A review. Computational Materials Science, 210:111457, 2022. doi: 10.1016/j.commatsci.2022.111457.
- Nonlinear hydrodynamic theory of crystallization. Journal of Physics: Condensed Matter, 26(5):055001, 2013. doi: 10.1088/0953-8984/26/5/055001.
- Derivation of the phase-field-crystal model for colloidal solidification. Physical Review E, 79(5):051404, 2009. doi: 10.1103/PhysRevE.79.051404.
- Vitelli, V. Crystals, liquid crystals and superfluid helium on curved surfaces. PhD thesis, Harvard University, Massachusetts, Jan. 2006.
- Angle-adjustable density field formulation for the modeling of crystalline microstructure. Physical Review B, 97:180102, 2018. doi: 10.1103/PhysRevB.97.180102.
- Dislocation-Driven Deformations in Graphene. Science, 337(6091):209–212, 2012. doi: 10.1126/science.1217529.
- Witten, T. A. Stress focusing in elastic sheets. Reviews of Modern Physics, 79(2):643–675, 2007. doi: 10.1103/RevModPhys.79.643.
- Controlling crystal symmetries in phase-field crystal models. Journal of Physics: Condensed Matter, 22:364102, 2010. doi: 10.1088/0953-8984/22/36/364102.
- Density-amplitude formulation of the phase-field crystal model for two-phase coexistence in two and three dimensions. Philosophical Magazine, 90(1-4):237–263, 2010. doi: 10.1080/14786430903164572.
- Defects controlled wrinkling and topological design in graphene. Journal of the Mechanics and Physics of Solids, 67:2–13, 2014a. doi: 10.1016/j.jmps.2014.02.005.
- Designing graphene structures with controlled distributions of topological defects: A case study of toughness enhancement in graphene ruga. Extreme Mechanics Letters, 1:3–8, 2014b. doi: https://doi.org/10.1016/j.eml.2014.12.007.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.