Papers
Topics
Authors
Recent
Search
2000 character limit reached

Knowledge-Driven Resource Allocation for D2D Networks: A WMMSE Unrolled Graph Neural Network Approach

Published 12 Jul 2023 in eess.SY and cs.SY | (2307.05882v1)

Abstract: This paper proposes an novel knowledge-driven approach for resource allocation in device-to-device (D2D) networks using a graph neural network (GNN) architecture. To meet the millisecond-level timeliness and scalability required for the dynamic network environment, our proposed approach incorporates the deep unrolling of the weighted minimum mean square error (WMMSE) algorithm, referred to as domain knowledge, into GNN, thereby reducing computational delay and sample complexity while adapting to various data distributions. Specifically, the aggregation and update functions in the GNN architecture are designed by utilizing the summation and power calculation components of the WMMSE algorithm, which leads to improved model generalization and interpretabiliy. Theoretical analysis of the proposed approach reveals its capability to simplify intricate end-to-end mappings and diminish the model exploration space, resulting in increased network expressiveness and enhanced optimization performance. Simulation results demonstrate the robustness, scalability, and strong performance of the proposed knowledge-driven resource allocation approach across diverse communication topologies without retraining. Our findings contribute to the development of efficient and scalable wireless resource management solutions for distributed and dynamic networks with strict latency requirements.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. C. Zhou, W. Wu, H. He, P. Yang, F. Lyu, N. Cheng, and X. Shen, “Delay-aware IoT task scheduling in space-air-ground integrated network,” in 2019 IEEE Global Communications Conference (GLOBECOM), Dec. 2019, pp. 1–6.
  2. N. Cheng, H. Jingchao, Y. Zhisheng, Z. Conghao, W. Huaqing, L. Feng, Z. Haibo, and S. Xuemin, “6G service-oriented space-air-ground integrated network: A survey,” Chinese J. Aeronaut., vol. 35, no. 9, pp. 1–18, Jun. 2022.
  3. W. Yu, G. Ginis, and J. Cioffi, “Distributed multiuser power control for digital subscriber lines,” IEEE J. Select. Areas Commun., vol. 20, no. 5, pp. 1105–1115, Jun. 2002.
  4. Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, “An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel,” IEEE Trans. Signal Process., vol. 59, no. 9, pp. 4331–4340, Sep. 2011.
  5. J. Papandriopoulos and J. S. Evans, “Scale: A low-complexity distributed protocol for spectrum balancing in multiuser dsl networks,” IEEE Trans. Inform. Theory, vol. 55, no. 8, pp. 3711–3724, Aug. 2009.
  6. R. Sun, N. Cheng, R. Zhang, Y. Wang, and C. Li, “Sum-rate maximization in IRS-assisted wireless-powered multiuser mimo networks with practical phase shift,” IEEE Internet Things J., vol. 10, no. 5, pp. 4292–4306, Mar. 2023.
  7. A. Zappone, M. Di Renzo, and M. Debbah, “Wireless networks design in the era of deep learning: Model-based, AI-based, or both?” IEEE Trans. Commun., vol. 67, no. 10, pp. 7331–7376, Jun. 2019.
  8. N. Cheng, S. Wu, X. Wang, Z. Yin, C. Li, W. Chen, and F. Chen, “AI for UAV-assisted IoT applications: A comprehensive review,” IEEE Internet Things J., pp. 1–1, May 2023.
  9. M. Li, C. Chen, H. Wu, X. Guan, and X. Shen, “Edge-assisted spectrum sharing for freshness-aware industrial wireless networks: A learning-based approach,” IEEE Trans. Wireless Commun., vol. 21, no. 9, pp. 7737–7752, Sep. 2022.
  10. H. Peng and X. Shen, “Deep reinforcement learning based resource management for multi-access edge computing in vehicular networks,” IEEE Trans. Netw. Sci. Eng, vol. 7, no. 4, pp. 2416–2428, Oct. 2020.
  11. N. Cheng, F. Lyu, W. Quan, C. Zhou, H. He, W. Shi, and X. Shen, “Space/aerial-assisted computing offloading for IoT applications: A learning-based approach,” IEEE J. Select. Areas Commun., vol. 37, no. 5, pp. 1117–1129, May 2019.
  12. H. Ye, G. Y. Li, and B.-H. Juang, “Power of deep learning for channel estimation and signal detection in OFDM systems,” IEEE Wireless Commun. Lett., vol. 7, no. 1, pp. 114–117, Feb. 2018.
  13. M. Tang and V. W. Wong, “Deep reinforcement learning for task offloading in mobile edge computing systems,” IEEE Transactions on Mobile Computing, vol. 21, no. 6, pp. 1985–1997, Jun. 2022.
  14. H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos, “Learning to optimize: Training deep neural networks for interference management,” IEEE Trans. Signal Process., vol. 66, no. 20, pp. 5438–5453, Oct. 2018.
  15. W. Lee, M. Kim, and D.-H. Cho, “Deep power control: Transmit power control scheme based on convolutional neural network,” IEEE Commun. Lett., vol. 22, no. 6, pp. 1276–1279, Jun. 2018.
  16. F. Liang, C. Shen, W. Yu, and F. Wu, “Towards optimal power control via ensembling deep neural networks,” IEEE Trans. Commun., vol. 68, no. 3, pp. 1760–1776, Mar. 2020.
  17. T. Chen, X. Zhang, M. You, G. Zheng, and S. Lambotharan, “A GNN-based supervised learning framework for resource allocation in wireless IoT networks,” IEEE Internet Things J., vol. 9, no. 3, pp. 1712–1724, Feb. 2022.
  18. X. Wang, L. Fu, N. Cheng, R. Sun, T. Luan, W. Quan, and K. Aldubaikhy, “Joint flying relay location and routing optimization for 6G UAV-IoT networks: A graph neural network-based approach,” Remote Sens., vol. 14, no. 17, pp. 4377–4403, Aug. 2022.
  19. M. Eisen and A. Ribeiro, “Optimal wireless resource allocation with random edge graph neural networks,” IEEE Trans. Signal Process., vol. 68, pp. 2977–2991, Apr. 2020.
  20. Y. Shen, Y. Shi, J. Zhang, and K. B. Letaief, “A graph neural network approach for scalable wireless power control,” in IEEE Globecom Workshops (GC Wkshps), Dec. 2019, pp. 1–6.
  21. Y. Shen, Y. Shi, J. Zhang, and K. B. Letaief, “Graph neural networks for scalable radio resource management: Architecture design and theoretical analysis,” IEEE J. Select. Areas Commun., vol. 39, no. 1, pp. 101–115, Jan. 2021.
  22. L. von Rueden, S. Mayer, K. Beckh, B. Georgiev, S. Giesselbach, R. Heese, B. Kirsch, J. Pfrommer, A. Pick, R. Ramamurthy, M. Walczak, J. Garcke, C. Bauckhage, and J. Schuecker, “Informed machine learning - A taxonomy and survey of integrating prior knowledge into learning systems,” IEEE Trans. Knowledge and Data Eng., vol. 35, no. 1, pp. 614–633, Jan. 2023.
  23. V. Monga, Y. Li, and Y. C. Eldar, “Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing,” IEEE Signal Process. Mag., vol. 38, no. 2, pp. 18–44, Mar. 2021.
  24. Y. Chen and T. Pock, “Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1256–1272, Jun. 2017.
  25. Y. Li, M. Tofighi, V. Monga, and Y. C. Eldar, “An algorithm unrolling approach to deep image deblurring,” in ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2019, pp. 7675–7679.
  26. Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang, “Deep networks for image super-resolution with sparse prior,” in 2015 IEEE International Conference on Computer Vision (ICCV), Dec. 2015, pp. 370–378.
  27. N. Samuel, T. Diskin, and A. Wiesel, “Learning to detect,” IEEE Trans. Signal Process., vol. 67, no. 10, pp. 2554–2564, May 2019.
  28. M.-W. Un, M. Shao, W.-K. Ma, and P. C. Ching, “Deep MIMO detection using ADMM unfolding,” in 2019 IEEE Data Science Workshop (DSW), Jun. 2019, pp. 333–337.
  29. Y. Shi, H. Choi, Y. Shi, and Y. Zhou, “Algorithm unrolling for massive access via deep neural networks with theoretical guarantee,” IEEE Trans. Wireless Commun., vol. 21, no. 2, pp. 945–959, Feb. 2022.
  30. Q. Hu, Y. Cai, Q. Shi, K. Xu, G. Yu, and Z. Ding, “Iterative algorithm induced deep-unfolding neural networks: Precoding design for multiuser MIMO systems,” IEEE Trans. Wireless Commun., vol. 20, no. 2, pp. 1394–1410, Feb. 2021.
  31. A. Chowdhury, G. Verma, C. Rao, A. Swami, and S. Segarra, “Unfolding WMMSE using graph neural networks for efficient power allocation,” IEEE Trans. Wireless Commun., vol. 20, no. 9, pp. 6004–6017, Sep. 2021.
  32. K. Xu, J. Li, M. Zhang, S. S. Du, K. ichi Kawarabayashi, and S. Jegelka, “What can neural networks reason about?” in International Conference on Learning Representations (ICLR) 2020, Apr. 2020.
  33. F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph neural network model,” IEEE Trans. Neural Netw., vol. 20, no. 1, pp. 61–80, Jan. 2009.
  34. K. Gregor and Y. LeCun, “Learning fast approximations of sparse coding,” in Proceedings of the 27th International Conference on International Conference on Machine Learning, Jun. 2010, pp. 399–406.
  35. W. Jin, X. Liu, Y. Ma, C. Aggarwal, and J. Tang, “Feature overcorrelation in deep graph neural networks: A new perspective,” in Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Aug. 2022, pp. 709–719.
Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.