Papers
Topics
Authors
Recent
Search
2000 character limit reached

Semantic HELM: A Human-Readable Memory for Reinforcement Learning

Published 15 Jun 2023 in cs.LG, cs.AI, cs.CL, and stat.ML | (2306.09312v2)

Abstract: Reinforcement learning agents deployed in the real world often have to cope with partially observable environments. Therefore, most agents employ memory mechanisms to approximate the state of the environment. Recently, there have been impressive success stories in mastering partially observable environments, mostly in the realm of computer games like Dota 2, StarCraft II, or MineCraft. However, existing methods lack interpretability in the sense that it is not comprehensible for humans what the agent stores in its memory. In this regard, we propose a novel memory mechanism that represents past events in human language. Our method uses CLIP to associate visual inputs with language tokens. Then we feed these tokens to a pretrained LLM that serves the agent as memory and provides it with a coherent and human-readable representation of the past. We train our memory mechanism on a set of partially observable environments and find that it excels on tasks that require a memory component, while mostly attaining performance on-par with strong baselines on tasks that do not. On a challenging continuous recognition task, where memorizing the past is crucial, our memory mechanism converges two orders of magnitude faster than prior methods. Since our memory mechanism is human-readable, we can peek at an agent's memory and check whether crucial pieces of information have been stored. This significantly enhances troubleshooting and paves the way toward more interpretable agents.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

GitHub

  1. GitHub - ml-jku/helm (57 stars)