Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Violation of Bell's inequalities in uniform random graphs (2305.02791v1)

Published 4 May 2023 in cond-mat.dis-nn, cond-mat.stat-mech, gr-qc, and quant-ph

Abstract: We demonstrate that quantum correlations can emerge from the statistical correlations of random discrete models, without an a priori assumption that the random models are quantum mechanical in nature, that is without considering superpositions of the random structures. We investigate the correlations between the number of neighbors(degree) for pairs of vertices in Erdos-Renyi uniform random graphs. We use the joint probabilities for the appearance of degree numbers between the vertices in the pairs, in order to calculate the respective Bell's inequalities. We find that the inequalities are violated for sparse random graphs with ratio of edges over vertices $R<2$, signifying the emergence of quantum correlations for these random structures. The quantum correlations persist independently of the graph size or the geodesic distance between the correlated vertices. For $R>2$, as the graph becomes denser by adding more edges between its vertices, the Bell's inequalities are satisfied and the quantum correlations disappear. Relations to our previous works concerning the emergence of spacetime and its geometrical properties from uniform random graphs, are also briefly discussed.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.