Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
103 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
50 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Smoothing volatility targeting (2212.07288v1)

Published 14 Dec 2022 in econ.EM

Abstract: We propose an alternative approach towards cost mitigation in volatility-managed portfolios based on smoothing the predictive density of an otherwise standard stochastic volatility model. Specifically, we develop a novel variational Bayes estimation method that flexibly encompasses different smoothness assumptions irrespective of the persistence of the underlying latent state. Using a large set of equity trading strategies, we show that smoothing volatility targeting helps to regularise the extreme leverage/turnover that results from commonly used realised variance estimates. This has important implications for both the risk-adjusted returns and the mean-variance efficiency of volatility-managed portfolios, once transaction costs are factored in. An extensive simulation study shows that our variational inference scheme compares favourably against existing state-of-the-art Bayesian estimation methods for stochastic volatility models.

Citations (2)

Summary

We haven't generated a summary for this paper yet.