Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Estimation and inference for stochastic blockmodels (2201.11424v2)

Published 27 Jan 2022 in math.ST, stat.ME, and stat.TH

Abstract: This paper is concerned with nonparametric estimation of the weighted stochastic block model. We first show that the model implies a set of multilinear restrictions on the joint distribution of edge weights of certain subgraphs involving (in its simplest form) triplets and quadruples of nodes. From this system of equations the unknown components of the model can be recovered nonparametrically, up to the usual labeling ambiguity. We introduce a simple and computationally-attractive manner to do this. Estimators then follow from the analogy principle. Limit theory is provided. We find that component distributions and their functionals, as well as their density functions (for the case where edge weights are continuous) are all estimable at the parametric rate. Numerical experiments are reported on.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.