Papers
Topics
Authors
Recent
Search
2000 character limit reached

Stable Recovery of Weighted Sparse Signals from Phaseless Measurements via Weighted l1 Minimization

Published 10 Jul 2021 in cs.IT, eess.SP, math.FA, and math.IT | (2107.04788v1)

Abstract: The goal of phaseless compressed sensing is to recover an unknown sparse or approximately sparse signal from the magnitude of its measurements. However, it does not take advantage of any support information of the original signal. Therefore, our main contribution in this paper is to extend the theoretical framework for phaseless compressed sensing to incorporate with prior knowledge of the support structure of the signal. Specifically, we investigate two conditions that guarantee stable recovery of a weighted $k$-sparse signal via weighted l1 minimization without any phase information. We first prove that the weighted null space property (WNSP) is a sufficient and necessary condition for the success of weighted l1 minimization for weighted k-sparse phase retrievable. Moreover, we show that if a measurement matrix satisfies the strong weighted restricted isometry property (SWRIP), then the original signal can be stably recovered from the phaseless measurements.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.