Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
53 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

NAPLES;Mining the lead-lag Relationship from Non-synchronous and High-frequency Data (2002.00724v1)

Published 3 Feb 2020 in q-fin.ST and econ.EM

Abstract: In time-series analysis, the term "lead-lag effect" is used to describe a delayed effect on a given time series caused by another time series. lead-lag effects are ubiquitous in practice and are specifically critical in formulating investment strategies in high-frequency trading. At present, there are three major challenges in analyzing the lead-lag effects. First, in practical applications, not all time series are observed synchronously. Second, the size of the relevant dataset and rate of change of the environment is increasingly faster, and it is becoming more difficult to complete the computation within a particular time limit. Third, some lead-lag effects are time-varying and only last for a short period, and their delay lengths are often affected by external factors. In this paper, we propose NAPLES (Negative And Positive lead-lag EStimator), a new statistical measure that resolves all these problems. Through experiments on artificial and real datasets, we demonstrate that NAPLES has a strong correlation with the actual lead-lag effects, including those triggered by significant macroeconomic announcements.

Citations (3)

Summary

We haven't generated a summary for this paper yet.