Papers
Topics
Authors
Recent
2000 character limit reached

Necessary and Sufficient Conditions for Surrogate Functions of Pareto Frontiers and Their Synthesis Using Gaussian Processes (1505.05063v3)

Published 19 May 2015 in cs.AI

Abstract: This paper introduces the necessary and sufficient conditions that surrogate functions must satisfy to properly define frontiers of non-dominated solutions in multi-objective optimization problems. These new conditions work directly on the objective space, thus being agnostic about how the solutions are evaluated. Therefore, real objectives or user-designed objectives' surrogates are allowed, opening the possibility of linking independent objective surrogates. To illustrate the practical consequences of adopting the proposed conditions, we use Gaussian processes as surrogates endowed with monotonicity soft constraints and with an adjustable degree of flexibility, and compare them to regular Gaussian processes and to a frontier surrogate method in the literature that is the closest to the method proposed in this paper. Results show that the necessary and sufficient conditions proposed here are finely managed by the constrained Gaussian process, guiding to high-quality surrogates capable of suitably synthesizing an approximation to the Pareto frontier in challenging instances of multi-objective optimization, while an existing approach that does not take the theory proposed in consideration defines surrogates which greatly violate the conditions to describe a valid frontier.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.