Papers
Topics
Authors
Recent
Search
2000 character limit reached

Deep Sequential Neural Network

Published 2 Oct 2014 in cs.LG and cs.NE | (1410.0510v1)

Abstract: Neural Networks sequentially build high-level features through their successive layers. We propose here a new neural network model where each layer is associated with a set of candidate mappings. When an input is processed, at each layer, one mapping among these candidates is selected according to a sequential decision process. The resulting model is structured according to a DAG like architecture, so that a path from the root to a leaf node defines a sequence of transformations. Instead of considering global transformations, like in classical multilayer networks, this model allows us for learning a set of local transformations. It is thus able to process data with different characteristics through specific sequences of such local transformations, increasing the expression power of this model w.r.t a classical multilayered network. The learning algorithm is inspired from policy gradient techniques coming from the reinforcement learning domain and is used here instead of the classical back-propagation based gradient descent techniques. Experiments on different datasets show the relevance of this approach.

Citations (61)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.