Unambiguous Tree Languages Are Topologically Harder Than Deterministic Ones
Abstract: The paper gives an example of a tree language G that is recognised by an unambiguous parity automaton and is analytic-complete as a set in Cantor space. This already shows that the unambiguous languages are topologically more complex than the deterministic ones, that are all coanalytic. Using set G as a building block we construct an unambiguous language that is topologically harder than any countable boolean combination of analytic and coanalytic sets. In particular the language is harder than any set in difference hierarchy of analytic sets considered by O.Finkel and P.Simonnet in the context of nondeterministic automata.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.