Papers
Topics
Authors
Recent
Search
2000 character limit reached

Sparse PCA: Convex Relaxations, Algorithms and Applications

Published 16 Nov 2010 in math.OC | (1011.3781v2)

Abstract: Given a sample covariance matrix, we examine the problem of maximizing the variance explained by a linear combination of the input variables while constraining the number of nonzero coefficients in this combination. This is known as sparse principal component analysis and has a wide array of applications in machine learning and engineering. Unfortunately, this problem is also combinatorially hard and we discuss convex relaxation techniques that efficiently produce good approximate solutions. We then describe several algorithms solving these relaxations as well as greedy algorithms that iteratively improve the solution quality. Finally, we illustrate sparse PCA in several applications, ranging from senate voting and finance to news data.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.