Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

GPUHammer: Rowhammer Attacks on GPU Memories are Practical (2507.08166v1)

Published 10 Jul 2025 in cs.CR

Abstract: Rowhammer is a read disturbance vulnerability in modern DRAM that causes bit-flips, compromising security and reliability. While extensively studied on Intel and AMD CPUs with DDR and LPDDR memories, its impact on GPUs using GDDR memories, critical for emerging machine learning applications, remains unexplored. Rowhammer attacks on GPUs face unique challenges: (1) proprietary mapping of physical memory to GDDR banks and rows, (2) high memory latency and faster refresh rates that hinder effective hammering, and (3) proprietary mitigations in GDDR memories, difficult to reverse-engineer without FPGA-based test platforms. We introduce GPUHammer, the first Rowhammer attack on NVIDIA GPUs with GDDR6 DRAM. GPUHammer proposes novel techniques to reverse-engineer GDDR DRAM row mappings, and employs GPU-specific memory access optimizations to amplify hammering intensity and bypass mitigations. Thus, we demonstrate the first successful Rowhammer attack on a discrete GPU, injecting up to 8 bit-flips across 4 DRAM banks on an NVIDIA A6000 with GDDR6 memory. We also show how an attacker can use these to tamper with ML models, causing significant accuracy drops (up to 80%).

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube