Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

LSS-SKAN: Efficient Kolmogorov-Arnold Networks based on Single-Parameterized Function (2410.14951v1)

Published 19 Oct 2024 in cs.AI

Abstract: The recently proposed Kolmogorov-Arnold Networks (KAN) networks have attracted increasing attention due to their advantage of high visualizability compared to MLP. In this paper, based on a series of small-scale experiments, we proposed the Efficient KAN Expansion Principle (EKE Principle): allocating parameters to expand network scale, rather than employing more complex basis functions, leads to more efficient performance improvements in KANs. Based on this principle, we proposed a superior KAN termed SKAN, where the basis function utilizes only a single learnable parameter. We then evaluated various single-parameterized functions for constructing SKANs, with LShifted Softplus-based SKANs (LSS-SKANs) demonstrating superior accuracy. Subsequently, extensive experiments were performed, comparing LSS-SKAN with other KAN variants on the MNIST dataset. In the final accuracy tests, LSS-SKAN exhibited superior performance on the MNIST dataset compared to all tested pure KAN variants. Regarding execution speed, LSS-SKAN outperformed all compared popular KAN variants. Our experimental codes are available at https://github.com/chikkkit/LSS-SKAN and SKAN's Python library (for quick construction of SKAN in python) codes are available at https://github.com/chikkkit/SKAN .

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.