Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Graph Network Models To Detect Illicit Transactions In Block Chain (2410.07150v1)

Published 23 Sep 2024 in cs.LG, cs.AI, and cs.NE

Abstract: The use of cryptocurrencies has led to an increase in illicit activities such as money laundering, with traditional rule-based approaches becoming less effective in detecting and preventing such activities. In this paper, we propose a novel approach to tackling this problem by applying graph attention networks with residual network-like architecture (GAT-ResNet) to detect illicit transactions related to anti-money laundering/combating the financing of terrorism (AML/CFT) in blockchains. We train various models on the Elliptic Bitcoin Transaction dataset, implementing logistic regression, Random Forest, XGBoost, GCN, GAT, and our proposed GAT-ResNet model. Our results demonstrate that the GAT-ResNet model has a potential to outperform the existing graph network models in terms of accuracy, reliability and scalability. Our research sheds light on the potential of graph related machine learning models to improve efforts to combat financial crime and lays the foundation for further research in this area.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.