Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Confluence of Directed Graph Reductions Preserving Feedback Vertex Set Minimality (2406.16390v1)

Published 24 Jun 2024 in cs.DM

Abstract: In graph theory, the minimum directed feedback vertex set (FVS) problem consists in identifying the smallest subsets of vertices in a directed graph whose deletion renders the directed graph acyclic. Although being known as NP-hard since 1972, this problem can be solved in a reasonable time on small instances, or on instances having special combinatorial structure. In this paper we investigate graph reductions preserving all or some minimum FVS and focus on their properties, especially the Church-Rosser property, also called confluence. The Church-Rosser property implies the irrelevance of reduction order, leading to a unique directed graph. The study seeks the largest subset of reductions with the Church-Rosser property and explores the adaptability of reductions to meet this criterion. Addressing these questions is crucial, as it may impact algorithmic implications, allowing for parallelization and speeding up sequential algorithms.

Summary

We haven't generated a summary for this paper yet.