Papers
Topics
Authors
Recent
Search
2000 character limit reached

Single-layer tensor network approach for three-dimensional quantum systems

Published 2 May 2024 in cond-mat.str-el and quant-ph | (2405.01489v2)

Abstract: Calculation of observables with three-dimensional projected entangled pair states is generally hard, as it requires a contraction of complex multi-layer tensor networks. We utilize the multi-layer structure of these tensor networks to largely simplify the contraction. The proposed approach involves the usage of the layer structure both to simplify the search for the boundary projected entangled pair states and the single-layer mapping of the final corner transfer matrix renormalization group contraction. We benchmark our results on the cubic lattice Heisenberg model, reaching the bond dimension D = 7, and find a good agreement with the previous results.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. B. Canals and C. Lacroix, Pyrochlore antiferromagnet: A three-dimensional quantum spin liquid, Phys. Rev. Lett. 80, 2933 (1998).
  2. L. Savary and L. Balents, Quantum spin liquids: a review, Rep. Prog. Phys. 80, 016502 (2016).
  3. M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82, 3045 (2010).
  4. C. Gross and I. Bloch, Quantum simulations with ultracold atoms in optical lattices, Science 357, 995 (2017).
  5. M. S. Scheurer, S. Rachel, and P. P. Orth, Dimensional crossover and cold-atom realization of topological Mott insulators, Sci. Rep. 5, 8386 (2015).
  6. V. Unukovych and A. Sotnikov, Anisotropy-driven magnetic phase transitions in SU(4)-symmetric Fermi gas in three-dimensional optical lattices (2024), arXiv:2403.04319 [cond-mat.quant-gas] .
  7. K. Okunishi, T. Nishino, and H. Ueda, Developments in the tensor network — from statistical mechanics to quantum entanglement, J. Phys. Soc. Jpn. 91, 062001 (2022).
  8. R. Orús, Tensor networks for complex quantum systems, Nat. Rev. Phys. 1, 538 (2019).
  9. M. C. Bañuls, Tensor network algorithms: A route map, Annu. Rev. Cond. Matt. Phys. 14, 173 (2023).
  10. M. Levin and C. P. Nave, Tensor renormalization group approach to two-dimensional classical lattice models, Phys. Rev. Lett. 99, 120601 (2007).
  11. Z.-C. Gu and X.-G. Wen, Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order, Phys. Rev. B 80, 155131 (2009).
  12. Y. Meurice, R. Sakai, and J. Unmuth-Yockey, Tensor lattice field theory for renormalization and quantum computing, Rev. Mod. Phys. 94, 025005 (2022).
  13. M. B. Hastings, An area law for one-dimensional quantum systems, J. Stat. Mech. 2007, P08024 (2007).
  14. J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area laws for the entanglement entropy, Rev. Mod. Phys. 82, 277 (2010).
  15. U. Schollwöck, The density-matrix renormalization group in the age of matrix product states, Ann. Phys. 326, 96 (2011).
  16. S. R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett. 69, 2863 (1992).
  17. F. Verstraete and J. I. Cirac, Renormalization algorithms for quantum-many body systems in two and higher dimensions (2004a), arXiv:cond-mat/0407066 [cond-mat.str-el] .
  18. F. Verstraete and J. I. Cirac, Valence-bond states for quantum computation, Phys. Rev. A 70, 060302 (2004b).
  19. L. Cincio, J. Dziarmaga, and M. M. Rams, Multiscale entanglement renormalization ansatz in two dimensions: Quantum Ising model, Phys. Rev. Lett. 100, 240603 (2008).
  20. L. Tagliacozzo, G. Evenbly, and G. Vidal, Simulation of two-dimensional quantum systems using a tree tensor network that exploits the entropic area law, Phys. Rev. B 80, 235127 (2009).
  21. P. Corboz, Improved energy extrapolation with infinite projected entangled-pair states applied to the two-dimensional Hubbard model, Phys. Rev. B 93, 045116 (2016).
  22. P. Corboz and F. Mila, Tensor network study of the Shastry-Sutherland model in zero magnetic field, Phys. Rev. B 87, 115144 (2013).
  23. V. Coffman, J. Kundu, and W. K. Wootters, Distributed entanglement, Phys. Rev. A 61, 052306 (2000).
  24. T. J. Osborne and F. Verstraete, General monogamy inequality for bipartite qubit entanglement, Phys. Rev. Lett. 96, 220503 (2006).
  25. A. Osterloh and R. Schützhold, Monogamy of entanglement and improved mean-field ansatz for spin lattices, Phys. Rev. B 91, 125114 (2015).
  26. S. S. Jahromi and R. Orús, Universal tensor-network algorithm for any infinite lattice, Phys. Rev. B 99, 195105 (2019).
  27. S. S. Jahromi and R. Orús, Thermal bosons in 3d optical lattices via tensor networks, Sci. Rep. 10, 19051 (2020).
  28. S. S. Jahromi, H. Yarloo, and R. Orús, Thermodynamics of three-dimensional Kitaev quantum spin liquids via tensor networks, Phys. Rev. Res. 3, 033205 (2021).
  29. H. C. Jiang, Z. Y. Weng, and T. Xiang, Accurate determination of tensor network state of quantum lattice models in two dimensions, Phys. Rev. Lett. 101, 090603 (2008).
  30. A. García-Sáez and J. I. Latorre, Renormalization group contraction of tensor networks in three dimensions, Phys. Rev. B 87, 085130 (2013).
  31. M. S. J. Tepaske and D. J. Luitz, Three-dimensional isometric tensor networks, Phys. Rev. Res. 3, 023236 (2021).
  32. P. C. G. Vlaar and P. Corboz, Simulation of three-dimensional quantum systems with projected entangled-pair states, Phys. Rev. B 103, 205137 (2021).
  33. P. C. G. Vlaar and P. Corboz, Efficient tensor network algorithm for layered systems, Phys. Rev. Lett. 130, 130601 (2023a).
  34. P. C. G. Vlaar and P. Corboz, Tensor network study of the Shastry-Sutherland model with weak interlayer coupling, SciPost Phys. 15, 126 (2023b).
  35. T. Nishino and K. Okunishi, Corner transfer matrix renormalization group method, J. Phys. Soc. Jpn. 65, 891 (1996).
  36. T. Nishino and K. Okunishi, Corner transfer matrix algorithm for classical renormalization group, J. Phys. Soc. Jpn. 66, 3040 (1997).
  37. R. Orús and G. Vidal, Simulation of two-dimensional quantum systems on an infinite lattice revisited: Corner transfer matrix for tensor contraction, Phys. Rev. B 80, 094403 (2009).
  38. R. Haghshenas, S.-S. Gong, and D. N. Sheng, Single-layer tensor network study of the Heisenberg model with chiral interactions on a kagome lattice, Phys. Rev. B 99, 174423 (2019).
  39. B. Vanhecke, L. Vanderstraeten, and F. Verstraete, Symmetric cluster expansions with tensor networks, Phys. Rev. A 103, L020402 (2021a).
  40. H. N. Phien, I. P. McCulloch, and G. Vidal, Fast convergence of imaginary time evolution tensor network algorithms by recycling the environment, Phys. Rev. B 91, 115137 (2015).
  41. J. Tindall and M. Fishman, Gauging tensor networks with belief propagation, SciPost Phys. 15, 222 (2023).
  42. J. Dziarmaga, Time evolution of an infinite projected entangled pair state: Neighborhood tensor update, Phys. Rev. B 104, 094411 (2021).
  43. M. Lubasch, J. I. Cirac, and M.-C. Bañuls, Unifying projected entangled pair state contractions, New J. Phys. 16, 033014 (2014).
  44. I. Pižorn, L. Wang, and F. Verstraete, Time evolution of projected entangled pair states in the single-layer picture, Phys. Rev. A 83, 052321 (2011).
  45. Y. Zheng and S. Yang, Loop update for infinite projected entangled-pair states in two spatial dimensions, Phys. Rev. B 102, 075147 (2020).
  46. W. Lan and G. Evenbly, Reduced contraction costs of corner-transfer methods for PEPS (2023), arXiv:2306.08212 [quant-ph] .
  47. M. Fishman, S. R. White, and E. M. Stoudenmire, The ITensor Software Library for Tensor Network Calculations, SciPost Phys. Codebases , 4 (2022).
  48. M. Rader and A. M. Läuchli, Finite correlation length scaling in Lorentz-invariant gapless iPEPS wave functions, Phys. Rev. X 8, 031030 (2018).
  49. S. Singh, R. N. C. Pfeifer, and G. Vidal, Tensor network decompositions in the presence of a global symmetry, Phys. Rev. A 82, 050301 (2010).
  50. S. Singh, R. N. C. Pfeifer, and G. Vidal, Tensor network states and algorithms in the presence of a global U(1) symmetry, Phys. Rev. B 83, 115125 (2011).
  51. P. Corboz and G. Vidal, Fermionic multiscale entanglement renormalization ansatz, Phys. Rev. B 80, 165129 (2009).
  52. L. Vanderstraeten, B. Vanhecke, and F. Verstraete, Residual entropies for three-dimensional frustrated spin systems with tensor networks, Phys. Rev. E 98, 042145 (2018).

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.