Hausdorff dimension of recurrence sets for matrix transformations of tori (2402.04810v1)
Abstract: Let $T\colon\mathbb{T}d\to \mathbb{T}d$, defined by $T x=Ax(\bmod 1)$, where $A$ is a $d\times d$ integer matrix with eigenvalues $1<|\lambda_1|\le|\lambda_2|\le\dots\le|\lambda_d|$. We investigate the Hausdorff dimension of the recurrence set [R(\psi):={x\in\mathbb{T}d\colon Tnx\in B(x,\psi(n)) {\rm ~for~infinitely~ many~}n}] for $\alpha\ge\log|\lambda_d/\lambda_1|$, where $\psi$ is a positive decreasing function defined on $\mathbb{N}$ and its lower order at infinity is $\alpha=\liminf\limits_{n\to\infty}\frac{-\log \psi(n)}{n}$. In the case that $A$ is diagonalizable over $\mathbb{Q}$ with integral eigenvalues, we obtain the dimension formula.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.