Papers
Topics
Authors
Recent
2000 character limit reached

Bound star clusters observed in a lensed galaxy 460 Myr after the Big Bang (2401.03224v2)

Published 6 Jan 2024 in astro-ph.GA

Abstract: The Cosmic Gems arc is among the brightest and highly magnified galaxies observed at redshift $z\sim10.2$. However, it is an intrinsically UV faint galaxy, in the range of those now thought to drive the reionization of the Universe. Hitherto the smallest features resolved in a galaxy at a comparable redshift are between a few hundreds and a few tens of parsecs. Here we report JWST observations of the Cosmic Gems. The light of the galaxy is resolved into five star clusters located in a region smaller than 70 parsec. They exhibit minimal dust attenuation and low metallicity, ages younger than 50 Myr and intrinsic masses of $\sim106$ M${\odot}$. Their lensing-corrected sizes are approximately 1 pc, resulting in stellar surface densities near $105$~M${\odot}$/pc$2$, three orders of magnitude higher than typical young star clusters in the local universe. Despite the uncertainties inherent to the lensing model, they are consistent with being gravitationally bound stellar systems, i.e., proto-globular clusters. We conclude that star cluster formation and feedback likely contributed to shape the properties of galaxies during the epoch of reionization. [Abridged]

Definition Search Book Streamline Icon: https://streamlinehq.com
References (56)
  1. McLeod, D. J. et al. The galaxy UV luminosity function at z ≃similar-to-or-equals\simeq≃ 11 from a suite of public JWST ERS, ERO, and Cycle-1 programs. MNRAS 527, 5004–5022 (2024). 2304.14469.
  2. Harikane, Y. et al. Pure Spectroscopic Constraints on UV Luminosity Functions and Cosmic Star Formation History From 25 Galaxies at zspec=8.61−13.20subscript𝑧spec8.6113.20z_{\mathrm{spec}}=8.61-13.20italic_z start_POSTSUBSCRIPT roman_spec end_POSTSUBSCRIPT = 8.61 - 13.20 Confirmed with JWST/NIRSpec. arXiv e-prints arXiv:2304.06658 (2023). 2304.06658.
  3. Finkelstein, S. L. et al. The Complete CEERS Early Universe Galaxy Sample: A Surprisingly Slow Evolution of the Space Density of Bright Galaxies at z ~8.5-14.5. arXiv e-prints arXiv:2311.04279 (2023). 2311.04279.
  4. Endsley, R. et al. A JWST/NIRCam study of key contributors to reionization: the star-forming and ionizing properties of UV-faint z 7-8 galaxies. MNRAS 524, 2312–2330 (2023). 2208.14999.
  5. Caputi, K. I. et al. MIDIS: The Relation between Strong (Hb+[OIII]) Emission, Star Formation and Burstiness Around the Epoch of Reionization. arXiv e-prints arXiv:2311.12691 (2023). 2311.12691.
  6. Radii of young star clusters in nearby galaxies. MNRAS 508, 5935–5953 (2021). 2106.12420.
  7. Salmon, B. et al. RELICS: A Candidate z ∼similar-to\sim∼ 10 Galaxy Strongly Lensed into a Spatially Resolved Arc. ApJ 864, L22 (2018). 1801.03103.
  8. Hsiao, T. Y.-Y. et al. JWST Reveals a Possible z 11 Galaxy Merger in Triply Lensed MACS0647-JD. ApJ 949, L34 (2023). 2210.14123.
  9. Morishita, T. et al. Enhanced Sub-kpc Scale Star-formation: Results From A JWST Size Analysis of 339 Galaxies At 5¡z¡14. arXiv e-prints arXiv:2308.05018 (2023). 2308.05018.
  10. Ono, Y. et al. Morphologies of Galaxies at z ≳greater-than-or-equivalent-to\gtrsim≳ 9 Uncovered by JWST/NIRCam Imaging: Cosmic Size Evolution and an Identification of an Extremely Compact Bright Galaxy at z 12. ApJ 951, 72 (2023). 2208.13582.
  11. Inferring the star formation histories of massive quiescent galaxies with BAGPIPES: evidence for multiple quenching mechanisms. MNRAS 480, 4379–4401 (2018). 1712.04452.
  12. Kim, K. J. et al. Small Region, Big Impact: Highly Anisotropic Lyman-continuum Escape from a Compact Starburst Region with Extreme Physical Properties. ApJ 955, L17 (2023). 2305.13405.
  13. Adamo, A. et al. Star Clusters Near and Far; Tracing Star Formation Across Cosmic Time. Space Sci. Rev. 216, 69 (2020). 2005.06188.
  14. Star cluster formation and survival in the first galaxies. MNRAS 522, 2495–2515 (2023). 2212.13946.
  15. Vanzella, E. et al. JWST/NIRCam Probes Young Star Clusters in the Reionization Era Sunrise Arc. ApJ 945, 53 (2023). 2211.09839.
  16. Vanzella, E. et al. High star cluster formation efficiency in the strongly lensed Sunburst Lyman-continuum galaxy at z = 2.37. A&A 659, A2 (2022). 2106.10280.
  17. The distinction between star clusters and associations. MNRAS 410, L6–L7 (2011). 1010.1720.
  18. On the mass-radius relation of hot stellar systems. MNRAS 408, L16–L20 (2010). 1007.2333.
  19. Population synthesis of black hole binary mergers from star clusters. MNRAS 492, 2936–2954 (2020). 1906.11855.
  20. Kruijssen, J. M. D. The minimum metallicity of globular clusters and its physical origin - implications for the galaxy mass-metallicity relation and observations of proto-globular clusters at high redshift. MNRAS 486, L20–L25 (2019). 1904.09987.
  21. Álvarez-Márquez, J. et al. Spatially-resolved Hα𝛼\alphaitalic_α and ionizing photon production efficiency in the lensed galaxy MACS1149-JD1 at a redshift of 9.11. arXiv e-prints arXiv:2309.06319 (2023). 2309.06319.
  22. Marques-Chaves, R. et al. Extreme N-emitters at high-redshift: signatures of supermassive stars and globular cluster or black hole formation in action? arXiv e-prints arXiv:2307.04234 (2023). 2307.04234.
  23. Cameron, A. J. et al. Nebular dominated galaxies in the early Universe with top-heavy stellar initial mass functions. arXiv e-prints arXiv:2311.02051 (2023). 2311.02051.
  24. Simulating star clusters across cosmic time - II. Escape fraction of ionizing photons from molecular clouds. MNRAS 492, 4858–4873 (2020). 2001.06109.
  25. Ricotti, M. Did globular clusters reionize the Universe? MNRAS 336, L33–L37 (2002). astro-ph/0208352.
  26. Mowla, L. et al. The Sparkler: Evolved High-redshift Globular Cluster Candidates Captured by JWST. ApJ 937, L35 (2022). 2208.02233.
  27. The ages and metallicities of the globular clusters in the Sparkler. MNRAS 525, L6–L10 (2023). 2306.11814.
  28. Usher, C. et al. The SLUGGS survey: measuring globular cluster ages using both photometry and spectroscopy. MNRAS 490, 491–501 (2019). 1909.05753.
  29. Two epochs of globular cluster formation from deep field luminosity functions: implications for reionization and the Milky Way satellites. MNRAS 432, 3250–3261 (2013). 1211.6153.
  30. Clues on the missing sources of reionization from self-consistent modelling of Milky Way and dwarf galaxy globular clusters. MNRAS 444, 2377–2395 (2014). 1406.6055.
  31. Extragalactic Globular Clusters and Galaxy Formation. ARA&A 44, 193–267 (2006). astro-ph/0602601.
  32. Formation histories of stars, clusters, and globular clusters in the E-MOSAICS simulations. MNRAS 486, 5838–5852 (2019). 1905.02217.
  33. Grudić, M. Y. et al. Great balls of FIRE - I. The formation of star clusters across cosmic time in a Milky Way-mass galaxy. MNRAS 519, 1366–1380 (2023). 2203.05732.
  34. In-situ vs accreted Milky Way globular clusters: a new classification method and implications for cluster formation. MNRAS (2023). 2309.15902.
  35. Rieke, M. J. et al. Performance of NIRCam on JWST in Flight. PASP 135, 028001 (2023). 2212.12069.
  36. grizli (2022). URL https://doi.org/10.5281/zenodo.6672538. Please cite this software using these metadata.
  37. Rigby, J. et al. The Science Performance of JWST as Characterized in Commissioning. PASP 135, 048001 (2023). 2207.05632.
  38. Planck Collaboration et al. Planck 2018 results. VI. Cosmological parameters. A&A 641, A6 (2020). 1807.06209.
  39. Messa, M. et al. Star-forming clumps in the Lyman Alpha Reference Sample of galaxies - I. Photometric analysis and clumpiness. MNRAS 487, 4238–4260 (2019). 1906.04751.
  40. Claeyssens, A. et al. Star formation at the smallest scales: a JWST study of the clump populations in SMACS0723. MNRAS 520, 2180–2203 (2023). 2208.10450.
  41. Vanzella, E. et al. Massive star cluster formation under the microscope at z = 6. MNRAS 483, 3618–3635 (2019). 1809.02617.
  42. Welch, B. et al. RELICS: Small-scale Star Formation in Lensed Galaxies at z = 6-10. ApJ 943, 2 (2023). 2207.03532.
  43. emcee: The MCMC Hammer. PASP 125, 306 (2013). 1202.3665.
  44. Ferland, G. J. et al. The 2017 Release Cloudy. Rev. Mexicana Astron. Astrofis. 53, 385–438 (2017). 1705.10877.
  45. Calzetti, D. et al. The Dust Content and Opacity of Actively Star-forming Galaxies. ApJ 533, 682–695 (2000). astro-ph/9911459.
  46. Re-evaluating old stellar populations. MNRAS 479, 75–93 (2018). 1805.08784.
  47. Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). astro-ph/0009005.
  48. Zackrisson, E. et al. The detection and characterization of highly magnified stars with JWST: Prospects of finding Population III. arXiv e-prints arXiv:2312.09289 (2023). 2312.09289.
  49. Bonn Optimized Stellar Tracks (BoOST). Simulated populations of massive and very massive stars for astrophysical applications. A&A 658, A125 (2022). 2004.08203.
  50. Jullo, E. et al. A Bayesian approach to strong lensing modelling of galaxy clusters. New Journal of Physics 9, 447 (2007). 0706.0048.
  51. Paterno-Mahler, R. et al. RELICS: A Strong Lens Model for SPT-CLJ0615-5746, a z = 0.972 Cluster. ApJ 863, 154 (2018). 1805.09834.
  52. Oguri, M. The Mass Distribution of SDSS J1004+4112 Revisited. PASJ 62, 1017 (2010). 1005.3103.
  53. Oguri, M. Fast Calculation of Gravitational Lensing Properties of Elliptical Navarro-Frenk-White and Hernquist Density Profiles. PASP 133, 074504 (2021). 2106.11464.
  54. A Universal Density Profile from Hierarchical Clustering. ApJ 490, 493–508 (1997). astro-ph/9611107.
  55. Non-parametric inversion of strong lensing systems. MNRAS 360, 477–491 (2005a). arXiv:astro-ph/0408418.
  56. Combined reconstruction of weak and strong lensing data with WSLAP. MNRAS 375, 958–970 (2007). arXiv:astro-ph/0509103.
Citations (16)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 4 tweets with 5 likes about this paper.

Youtube Logo Streamline Icon: https://streamlinehq.com