Arithmetic properties and asymptotic formulae for $σ_o\text{mex}(n)$ and $σ_e\text{mex}(n)$
Abstract: The minimal excludant of an integer partition is the least positive integer missing from the partition. Let $\sigma_o\text{mex}(n)$ (resp., $\sigma_e\text{mex}(n)$) denote the sum of odd (resp., even) minimal excludants over all the partitions of $n$. Recently, Baruah et al. proved a few congruences for these partition functions modulo $4$ and $8$, and asked for asymptotic formulae for the same. In this article, we study the lacunarity of $\sigma_o\text{mex}(n)$ and $\sigma_e\text{mex}(n)$ modulo arbitrary powers of $2$ and also prove some infinite families of congruences for $\sigma_o\text{mex}(n)$ and $\sigma_e\text{mex}(n)$ modulo $4$ and $8$. We also obtain Hardy-Ramanujan type asymptotic formulae for both $\sigma_o\text{mex}(n)$ and $\sigma_e\text{mex}(n)$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.