2000 character limit reached
All links are semiholomorphic
Published 22 Nov 2022 in math.GT | (2211.12329v1)
Abstract: Semiholomorphic polynomials are functions $f:\mathbb{C}2\to\mathbb{C}$ that can be written as polynomials in complex variables $u$, $v$ and the complex conjugate $\overline{v}$. We prove the semiholomorphic analogoue of Akbulut's and King's "All knots are algebraic", that is, every link type in the 3-sphere arises as the link of a weakly isolated singularity of a semiholomorphic polynomial. Our proof is constructive, which allows us to obtain an upper bound on the polynomial degree of the constructed functions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.