Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Dickman Approximation of weighted random sums in the Kolmogorov distance (2211.10171v1)

Published 18 Nov 2022 in math.PR

Abstract: We consider distributional approximation by generalized Dickman distributions, which appear in number theory, perpetuities, logarithmic combinatorial structures and many other areas. We prove bounds in the Kolmogorov distance for the approximation of certain weighted sums of Bernoulli and Poisson random variables by members of this family. While such results have previously been shown in Bhattacharjee and Goldstein (2019) for distances based on smoother test functions and for a special case of the random variables considered in this paper, results in the Kolmogorov distance are new. We also establish optimality of our rates of convergence by deriving lower bounds. As a result, some interesting phase transitions emerge depending on the choice of the underlying parameters. The proofs of our results mainly rely on the use of Stein's method. In particular, we study the solutions of the Stein equation corresponding to the test functions associated to the Kolmogorov distance, and establish their smoothness properties. As applications, we study the runtime of the Quickselect algorithm and the weighted depth in randomly grown simple increasing trees.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.