Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Distinct universality classes of diffusive transport from full counting statistics (2203.09526v3)

Published 17 Mar 2022 in cond-mat.stat-mech, cond-mat.mes-hall, cond-mat.quant-gas, cond-mat.str-el, and quant-ph

Abstract: The hydrodynamic transport of local conserved densities furnishes an effective coarse-grained description of the dynamics of a many-body quantum system. However, the full quantum dynamics contains much more structure beyond the simplified hydrodynamic description. Here we show that systems with the same hydrodynamics can nevertheless belong to distinct dynamical universality classes, as revealed by new classes of experimental observables accessible in synthetic quantum systems, which can, for instance, measure simultaneous site-resolved snapshots of all of the particles in a system. Specifically, we study the full counting statistics of spin transport, whose first moment is related to linear-response transport, but the higher moments go beyond. We present an analytic theory of the full counting statistics of spin transport in various integrable and non-integrable anisotropic one-dimensional spin models, including the XXZ spin chain. We find that spin transport, while diffusive on average, is governed by a distinct non-Gaussian dynamical universality class in the models considered. We consider a setup in which the left and right half of the chain are initially created at different magnetization densities, and consider the probability distribution of the magnetization transferred between the two half-chains. We derive a closed-form expression for the probability distribution of the magnetization transfer, in terms of random walks on the half-line. We show that this distribution strongly violates the large-deviation form expected for diffusive chaotic systems, and explain the physical origin of this violation. We discuss the crossovers that occur as the initial state is brought closer to global equilibrium. Our predictions can directly be tested in experiments using quantum gas microscopes or superconducting qubit arrays.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.