Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 180 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Complexity-like properties and parameter asymptotics of $\mathfrak{L}_{q}$-norms of Laguerre and Gegenbauer polynomials (2108.07214v1)

Published 16 Aug 2021 in math-ph, math.MP, and quant-ph

Abstract: The main monotonic statistical complexity-like measures of the Rakhmanov's probability density associated to the hypergeometric orthogonal polynomials (HOPs) in a real continuous variable, each of them quantifying two configurational facets of spreading, are examined in this work beyond the Cram\'er-Rao one. The Fisher-Shannon and LMC (L\'opez-Ruiz-Mancini-Calvet) complexity measures, which have two entropic components, are analytically expressed in terms of the degree and the orthogonality weight's parameter(s) of the polynomials. The degree and parameter asymptotics of these two-fold spreading measures are shown for the parameter-dependent families of HOPs of Laguerre and Gegenbauer types. This is done by using the asymptotics of the R\'enyi and Shannon entropies, which are closely connected to the $\mathfrak{L}_{q}$-norms of these polynomials, when the weight's parameter tends towards infinity. The degree and parameter asymptotics of these Laguerre and Gegenbauer algebraic norms control the radial and angular charge and momentum distributions of numerous relevant multidimensional physical systems with a spherically-symmetric quantum-mechanical potential in the high-energy (Rydberg) and high-dimensional (quasi-classical) states, respectively. This is because the corresponding states' wavefunctions are expressed by means of the Laguerre and Gegenbauer polynomials in both position and momentum spaces.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.