Papers
Topics
Authors
Recent
2000 character limit reached

Cooperating RPN's Improve Few-Shot Object Detection (2011.10142v1)

Published 19 Nov 2020 in cs.CV

Abstract: Learning to detect an object in an image from very few training examples - few-shot object detection - is challenging, because the classifier that sees proposal boxes has very little training data. A particularly challenging training regime occurs when there are one or two training examples. In this case, if the region proposal network (RPN) misses even one high intersection-over-union (IOU) training box, the classifier's model of how object appearance varies can be severely impacted. We use multiple distinct yet cooperating RPN's. Our RPN's are trained to be different, but not too different; doing so yields significant performance improvements over state of the art for COCO and PASCAL VOC in the very few-shot setting. This effect appears to be independent of the choice of classifier or dataset.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.